
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

THE DDD-III: A RESEARCH PARADIGM
FOR ABSTRACTING JOINT C3 SCENARIOS

FOR TIER-1 EXPERIMENTS.

by

Gregory Scott Higgins

June, 1996

Thesis Advisor: David L. Kleinman

Approved for public release; distribution is unlimited.

»EC QUALITY IN8PBCHBD 3

19960910 147

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
June 1996

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
THE DDD-III: A RESEARCH PARADIGM FOR ABSRACTING JOINT
C3 SCENARIOS FOR TIER-1 EXPERIMENTS

6. AUTHOR(S) Higgins, Gregory S.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey CA 93943-5000

PERFORMING
ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Advances in communications technology and computers have made possible tremendous leaps forward in
real-time Command and Control (C2). This revolution in C2 capability will provide decisionmakers (DMs) in
the Joint military organization with an unparalleled tactical and strategic picture of the battlefield ("Global
Awareness"). The ways in which DMs having Global Awareness coordinate their information, resources and
activities to fulfill the organization's mission is the focus of the Adaptive Architectures for Command and
Control (A2C2) project. In order to examine these command and control issues empirically, the A2C2 project
required a multi-player real-time simulation environment. A new computer model was needed to abstract
"real world" problems into a controlled laboratory environment. The result was the Distributed Dynamic
Decisionmaking (DDD-III) paradigm. The phase one experiment of the A2C2 project was designed to validate
the DDD-III paradigm, with emphasis on the manipulation of organizational variables. This document reviews
the project objectives, DDD-III capabilities, experiment one scenarios and scenario development issues. The
scenario generator users guide and players tutorial, developed during phase one, are provided. The intent of
this document is to link the phase one experiment to the next, more advanced phase of the A2C2 project.

14. SUBJECT TERMS Distributive Dynamic Decisionmaking Adaptive Architechtures 15. NUMBER OF
PAGES i R5

16. PRICE CODE

17. SECURITY CLASSIFI-
CATION OF REPORT
Unclassified

18. SECURITY CLASSIFI-
CATION OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICA-
TION OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500

JmC QUALITY IH8PB0TED 9

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

11

Approved for public release; distribution is unlimited.

THE DDD-III: A RESEARCH PARADIGM FOR ABSTRACTING JOINT
C3 SCENARIOS FOR TIER-1 EXPERIMENTS.

Gregory S. Higgins
Lieutenant Commander, United States Navy

B.E. E. Villanova University, 1985

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS TECHNOLOGIES
(SPACE OPERATIONS)

from the

Author:

Approved by:

NAVAL POSTGRADUATE SCHOOL
»96

/fdiJ /' £hz

rfgory S. Higgins

David L. Kleinman, Thesis Advisor

R. Panholzer, Chairman
Department of Space Systems Academic Group

in

IV

ABSTRACT

Advances in communications technology and computers have made possible
tremendous leaps forward in real-time Command and Control (C2). This
revolution in C2 capability will provide decisionmakers (DMs) in the Joint
military organization with an unparalleled tactical and strategic picture of the
battlefield ("Global Awareness"). The ways in which DMs having Global
Awareness coordinate their information, resources and activities to fulfill the
organization's mission is the focus of the Adaptive Architectures for Command
and Control (A2C2) project. In order to examine these command and control
issues empirically, the A2C2 project required a multi-player real-time simulation
environment. A new computer model was needed to abstract "real world"
problems into a controlled laboratory environment. The result was the Distributed
Dynamic Decisionmaking (DDD-III) paradigm. The phase one experiment of the
A2C2 project was designed to validate the DDD-III paradigm, with emphasis on
the manipulation of organizational variables. This document reviews the project
objectives, DDD-III capabilities, experiment one scenarios and scenario
development issues. The scenario generator users guide and players tutorial,
developed during phase one, are provided. The intent of this document is to link
the phase one experiment to the next, more advanced phase of the A2C2 project.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. DISCUSION 1

B. APPROACH 3
1. Project requirements 3
2. Core elements 3
3. Phase I experiment scenario 3
4. Simulation Development 4
5. Future Issues 4
6. Development Aids 4

II. A2C2 PROJECT REQUIREMENTS FOR THE DDD-III PARADIGM 5

A. A2C2 PROJECT DESCRIPTION 5

B. SIMULATIONS 6
1. Other simulations 7

a. RESA 7
b. JTLS 8
c.MTWS 9

2. Distributed Dynamic Decisionmaking (DDD)-III 10
3. Objectives of the DDD-III 12

C. THE DDD-III ENVIRONMENT 12
1. Joint warfare framework 13
2. Mission structure 14
3. Force composition 14

III. DDD-III CORE ELEMENTS 17

A. TASK AND TASK STRUCTURE 17
1. Task type and class 18
2. Task attributes 18
3. Task attributes-to-resource mapping 19
4. Task precedences/prerequisites 20
5. Task parallel processing 21

vn

6. Task spawning 22
7. Task Removal 23

B. PLATFORMS AND PLATFORM STRUCTURE 23
1. Platform type/class definition 24
2. Subplatforms 24
3. Platform sensors 25
4. Platform resources 26

C. ORGANIZATIONS AND ORGANIZATIONAL STRUCTURE 28
1. Command/authority structure 28

a. Task assignment 29
b. Platform assignment 29

2. Resource access structure 30
3. Information structure 30
4. Communications structure 31

D. DATA COLLECTION 33
1. Measures 33

a. Performance 34
b. Process 34

2. Output Files 35
a. Log Files 35
b. Dep Files 35

IV. DDD-III EXPERIMENT PHASE I SCENARIO DESCRIPTION AND
REQUIREMENTS 37

A. EXPERIMENT ONE HYPOTHESIS 37

B. IMPLEMENTATION 3g

C. SCENARIO DESCRIPTION 38
1. Geography/Geopolitical 38
2. Mission and Execution 39
3. Competition 40

D. ABSTRACTION 41

1. Information structure 41
2. Command structure 42

a. Decision Structure 44
b. Communications Permission 44

viu

3. Own Forces available 45
a. MEU1 46
b. MEU2 46
c. CVBG 46
d. ARG 47
e. CJTF 47
f. Subplatform structure 49

4. Enemy forces presented 51
a. Threats against landing forces 51
b. Threats to the maritime forces 51

5. Mapping of Resources to Attributes 52

V. DDD-III EXPERIMENT PHASE I - SIMULATION DEVELOPMENT
ISSUES 55

A. GEOGRAPHY 55
1. Beachhead 56
2. Cities 57
3. Port/Airport areas 58
4. land obstacles 60

a. Roads 60
b. Swamps 61

B. PLATFORMS 63
1. Reconnaissance platform 64
2. Platform reusability 65

a. Endurance/returnability 65
b. Reusable flag 66

3. Subplatform ownership - location vs. command hierarchy 67

C. TASKS 69
1. Specific task issues ("indirect" threats) 69

a. Artillery 70
b. Silkworm sites 72

2. Spawning 75
3. Stealth command usability 76

a. Mines 77

D. SPEED AND MOVEMENT 79

E. EXPERIMENTAL CONTROL 80

VI. DDD-III EXPERIMENT PHASE I - FUTURE ISSUES 81

IX

A. INFORMATION STRUCTURE 81
1. Information net design 81
2. Information growth 83
3. Communications 84

a. Internal message traffic 84
b. External message traffic 85

B.COMMAND STRUCTURE 85
1. Level of decision making 85

C. ENVIRONMENT 86
1. Geography 86

D. PLATFORMS ; 86
1. Ownership 86
2. Attrition 87
3. Loss of resources (damage) to an asset 88
4. Auto-stop (intelligence) ; 88

E. TASKS 89
1. Arrival time based on location 89
2. Dynamic Tasks (attibutes, etc. as a function of time) 89
3. Parallel attacks by several Dms (done) 90
4. Unknown resources needed for engagement 90
5. Tasks reduced in ability following an attack 91
6. Tasks warned off vice destroyed 91

F. SPEED AND MOVEMENT 92

1. Variable task speed 92

VII. SUMMARY 93
A. PROJECT CONCEPT ['..''...... [''[[[[[''' "93

B. DISTRIBUTED DYNAMIC DECISIONMAKING (DDD)-III 93
1. Requirements 93
2. Environment 94
3. Core elements 95

C. PHASE ONE EXPERIMENT 95

1. Hypothesis 95
2. Goal 95

3. Scenario 96
4. DDD Developement 96

a. Phase one issues 96

b. Future issues 97

D. FUTURE EXPERIMENTS - PHASE TWO 97

E. CONCLUSIONS 97

Apendix A: Scenario Generator Users Manual 99

Appendix B: Distributed Dynamic Decisionmaking (DDD-III)
experiment phase I - tutorial 157

List of References 169

Distribution list 171

xi

I. INTRODUCTION

A. DISCUSSION

Rapid advances in communications technology and computers have made possible

tremendous leaps forward in real-time Command and Control (C2). This revolution in

C2 capability will soon provide decisionmakers (DMs) in a Joint military organization

with an unparalleled tactical and strategic picture of the battlefield. Additionally, a

decisionmaker will have the ability to rapidly access all information available within the

organization, monitor actions made by other DMs, and call upon a world-wide data base

to aid in the decision process. This powerful, all-knowing capability has been dubbed the

name "Global Awareness".

The processes by which DMs having Global Awareness coordinate their

information, resources and activities to fulfill the organization's mission, (especially in a

dynamic and uncertain environment,) are adapting in response to the changing

informational infrastructure. Current research involving adaptive architectures for Joint

Command and Control (C2) seeks to examine the interactions between mission

requirements and organizational structure. The Office of Naval Research has

commissioned a research effort into this far reaching topic ^ the Adaptive Architectures

for Command and Control (A2C2) project. This project will explore the changes in task

structure that drive changes to organizational structure in the Joint warfare environment,

and how the Joint organization should adapt to such changes.

In order to examine these command and control issues empirically, the A2C2

project required a multi-player real-time simulation environment capable of:

• Focusing on the dynamic/execution phases of the mission

• Allowing easy manipulation of key structural variables in task and

organizational dimensions.

The approach taken combined empirical and analytical efforts to develop a

model-based program of experimentation with human teams. A first step in this process

was to abstract "real world" problems in order to bring them into a controlled laboratory

environment where we could manipulate a large variety of experimental conditions.

A new paradigm was needed to support such model-based empirical research,

resulting in the development of the Distributed Dynamic Decisionmaking (DDD-III)

paradigm. This third generation paradigm is an evolution of an earlier paradigm, the

DDD-II, which was the backbone of extensive empirical research from 1989 - 1995

involving "open-ocean" naval team (distributed) decisionmaking and coordination.

This thesis will overview the objectives of the A2C2 project and the general

requirements of the tier-1 experiments conducted 4-16 March 1996 at the Naval

Postgraduate School. Emphasis will be on the operationalizing of various dimensions of

task and organizational structure and the new DDD-III paradigm.

B. APPROACH

1. Project requirements

We will begin by reviewing the A2C2 project goals. Chapter II will cover the

general requirements of the project, with emphasis on interactive computer simulations -

what is currently available and what options were considered for phase one. The basic

framework of the DDD-III will be discussed, as well as the environment contained in this

new simulation.

2. Core elements

Once the basic DDD model is defined, chapter III will move further into the

paradigm and a description of the core elements. What elements can the scenario

designer control to investigate an overall hypothesis? Broken down into three general

areas; task, platform and organization, the chapter will discuss the specific concepts

behind each variable changed and the measures monitored to view the results. A

description of the various dimensions of organizational structure contained in the DDD-

III will be reviewed.

3. Phase I experiment scenario

Beginning in chapter IV the focus of the thesis will shift from the generic DDD

applications to the specifics of the phase one experiment conducted in March 1996. The

purpose of this experiment - to test interaction between organizational structure and task

structure, will be reviewed. The general hypothesis, implementation and abstraction will

be explained, emphasizing the details of the scenario used.

4. Simulation Development

Chapter V will cover development issues that arose during the phase one

experiment. The DDD-III continued to evolve during the phase one scenario design,

allowing for abstraction of specific missions and actions in the Joint world. The

challenges faced in the design of the display interface, the movement of the various assets

and the representation of threats are outlined here - along with the solutions found.

5. Future Issues

Finally, chapter VI will address several scenario and software elements that arose

during phase one but were determined to be future issues.

6. Development aides

Appendix A contains the scenario generator users guide, developed to assist future

experimenters in the design of scenarios and their abstraction from the real-world to the

DDD world. This users guide, when coupled with the players tutorial contained in

Appendix B, represents the link to phase two experiments.

II. A2C2 PROJECT REQUIREMENTS FOR THE DDD-III PARADIGM

A. A2C2 PROJECT DESCRIPTION

The Adaptive Architectures for Command and Control (A2C2) project is a four

year research effort commissioned by the Office of Naval Research (ONR) to study

emerging issues in command and control (C2). The project's overall goal is to increase

the level of knowledge regarding decisionmaking in organizations that must operate in an

environment, or mission context, that is subject to change. A secondary goal is to extend

12 years of composite naval warfare decisionmaking research into the Joint C2 arena.

The focus of the A2C2 project is centered on adaptive architecture structures, such as

authority, communication, resources ownership, etc., and specifically how these

architectures should be driven by changes in the Joint environment.

The A2C2 project involves an "industry-university-government" initiative, with

researchers from the Naval Postgraduate School (NPS), the University of Connecticut,

Alphatech, Inc., George Mason University, and the MITRE Corp. The research program

is a three-pronged, coordinated effort that involves field, experimental, and theoretical

components:

• Interviews with experienced joint officers

• Participation in exercises and demonstrations (pooling of theoretical and

analytical techniques to provide models of decisionmaking and adaptation)

• A three-tiered series of experiments with officers in joint settings for

measurement of individual and team performance in dynamic, evolving

missions and scenarios. The intent is to subject the results from tier-I

experiments to further scrutiny in tier-II experimentation, and ultimately

to apply them to improve the command and control abilities of actual C2

operational organizations.

As part of the charter of the A2C2 project, a tier-I experiment to test hierarchical

structure was conducted by the research group at the Naval Postgraduate School (NPS) in

March 1996. This experiment represents phase one of the A2C2 project.

B. SIMULATIONS

In order to determine empirically how structural changes effect an organization's

command and control process it is necessary to be able to control the many variables that

describe that organization. There are basically two paths that can be taken to conduct

controlled experiments. The first path, which involves the use of real-world assets and

command organizations to investigate an experimental hypothesis, is unrealistic. It is fan-

to say that it would be "difficult" to convince the Department of Defense to "loan" a fully

operational Joint Task Force to the A2C2 project for the purposes of experimentation.

The second, more practical, method is to abstract the important elements of the real-world

command and control problem into a computer model, or simulation. This simulation

can then be administered to test subjects, representative of a cross-section of the general

military officer populace. The performance of the decisionmaking teams in this

simulation can then be analyzed statistically, and the results extended to the real-world.

1. Other simulations

Computer simulations are not a new concept. Many attempts have been made to

model the warfare environment, some with more success than others. Several excellent

war gamming simulators exist today, such as RESA, JTLS and MTWS. These are used

by individual services and Joint commands to train for future conflicts. These models

allow for high-level, theater emulation of tactics, but in our experiment the tactical

performance of the team being tested was in itself not important. The unique A2C2

project requirement - to change task and organizational structure, thereby directly

influencing team performance, - did not appear to be effectively supported by any of these

simulations. Each was reviewed by the A2C2 project, not just for use during phase one

but for future use as well.

a. Research Evaluation System Analysis (RESA)

RESA is a high-level Naval war game which is supported by an extensive

secret data base and tactical outcomes matrix. The ability to move above the individual

unit and component level to Fleet and theater decisionmaking is supported, although

RESA is not designed specifically for that task. The data collection abilities of RESA are

actually quite good, with some user definition possible and most measures of

effectiveness (MOE) automatically recorded. The scenarios contained in the software can

be modified fairly easily, which would allow some degree of control over the tasking and

asset competition of the team members. However, operationalizing the changes in

organization (and task) structure would be more by accident than by design - one would

have to "trick" the computer into chain of command changes. The ease of use and the

relatively short training period required for test subjects would be an advantage in cycling

a large number through the simulation in a short period of time. RESA, however, has no

capability to model amphibious or ground warfare components, making this simulation

poor for A2C2 needs in modeling Joint operations. Most significantly, any changes made

to the simulation could not be supported without major revisions in software.

b. Joint Theater Level Simulation (JTLS)

JTLS is a high level Joint war game, supported by a large computer data

base of every conceivable tactical combination of weapons, threats and maneuvers. This

simulation models the theater level decisionmaking organization while simultaneously

requiring the user to specify such items as individual platform weapons loads. This

combination of high level decisions and low, low level planning makes JTLS completely

unwieldy and cumbersome for our purposes. The simulator is excellent in the

representation of ground forces, weak in the amphibious world and very, yery. weak in the

Naval world. As a result of these combined deficiencies is would be extremely difficult

to accurately model the Joint world. (The name of the simulation not withstanding.)

Overall, the simulator is not suitable for abstracting the changes in organization structure

required. The scenarios and command structures cannot be easily changed by the user

and would require enormous software modifications to provide the required flexibility.

Additionally, these software changes would have to be made through an administrative

and maintenance contractor who holds the rights to the software.

c. MAGTAF Tactical Warfare System (MTWS)

MTWS is an excellent, high-level, Joint war game supported by an

extensive data base, tactical matrix, and outstanding theater level command structure.

The simulation is mainly concerned with the Theater level decisionmaking process. Data

collection abilities of MTWS are outstanding, with user definition possible and multiple

MOE's covered. The scenarios contained in the software can be easily modified, with all

degrees of tasking and competition supported. The ease of use and short training period

required for test subjects, coupled with the small number of support personnel would

make it possible to have a high rate of experiment throughput. If MTWS had been

available for small scale use at NPS, tier-I experiments for the A2C2 project might have

been run using that simulator. Tier-II experiments using MTWS are a very real

possibility. Providing the ability to incorporate players not collocated, MTWS may soon

be contained in the Global Command and Control System (GCCS) currently coming on-

line in the field. The GCCS, in addition to possibly supporting the MTWS package,

provides the decision teams with Distributed Collaborative Planning Aids, a tool that will

be used by Joint planners in the real-world. It is envisioned that a candidate for A2C2

tier-Ill empirical studies will be GCCS with MTWS as a Joint hybrid game.

2. Distributive Dynamic Decisionmaking (DDD) -III

After reviewing the simulators currently in use and available it became apparent

that a user friendly, easily modified, "low level" command and control simulator was

required. To support this need the Distributed Dynamic Decisionmaking (DDD-III)

paradigm was developed, based upon the earlier DDD-II paradigm [Ref 1], which was the

backbone of extensive empirical research from 1989 -1995 involving "open- ocean"

naval team (distributed) decisionmaking. The DDD-II paradigm, adäquate for its

designed purpose, allowed for very little manipulation of command structure and other

organizational variables. The DDD-III represents a huge leap forward in one's ability to

model the Joint real-world environment, with a wide range of commands and user defined

parameters available to abstract the complex components and variables associated with a

Joint battle space.

DDD-III provides a multi-player, real-time, model-based simulation environment

to conduct empirical research within a controlled laboratory environment. The design of

DDD-III focuses on the dynamic/execution phase of the mission and allows for easy

manipulation of key structural variables both in task and organizational dimensions.

10

The software has the ability to handle many abstractions of the Joint world,

including:

Geography/distance

A wide variety of task types and classes

Moveable platforms (with sensors)

Weapons (resources)

Subplatforms

Ability to impose communication constraints

Ability to manipulate the information/resource structure

The DDD-III was developed to abstract the decisionmaking environment faced by

a Joint military organization. Limited resources must be allocated by human

decisionmakers (DMs) to prosecute tasks (i.e., activities or "things to do") in a dynamic

and uncertain environment. Command and control issues are introduced to the simulation

exercise though changes in organizational, task and information structures. Objective

(verses subjective) data collection exists at all levels of the simulation and can be tailored

by the scenario designer to record nearly every possible variation of the team's

performance. While not a true tactical model, the DDD-III can be conceptualized as a

bridge between the real-world Joint (operational) environment and the laboratory.

11

3. Objectives of the DDD-III

The overall objective of the DDD-III development was to provide a multi-player,

real-time environment to support tier-I (controllable, laboratory-based) empirical research

for the A2C2 project. The DDD-III was designed to specifically fulfill the following

needs:

• Create a "realistic" Joint environment within a computer simulation,

abstracting the various elements of Army, Navy, Air Force and Marine

warfare, found in the Joint Task Force environment, to an understandable

computer representation.

• Provide for the easy manipulation of key structural variables to allow

testing of basic hypotheses dealing with structural change.

• Avoid the need to build/require a technical domain expertise in test

subjects, thereby allowing the experiment to be conducted on-site at NPS

using available officers.

• Create a simulator that would allow for ease of scenario design/change,

data collection and data retrieval.

C. THE DDD-III ENVIRONMENT

The overriding hypothesis of the A2C2 research is that changes in task structure

will drive changes to organizational structure. Based on this, the DDD-III scenario is

crafted by the experiment designer to uncover key issues in the organization's

12

decisionmaking and/or coordination processes. The DDD-III must therefore have the

ability to explicitly operationalize many of the relevant organizational dimensions within

a Joint task force (JTF). There are three essential factors that make the DDD-III ideal for

the tier-I experiments to be conducted by the A2C2 project. They are: the concept of

military "Jointness", the ability to abstract mission level requirements and finally, to

impose competition for assets on the teams being tested in order to force intra-

organization coordination

1. Joint warfare framework

Warfare of the future will be conducted using mobile, flexible military units

requiring streamlined command structures. It is almost certain that the military of the

future will be smaller and that all major operations will be Joint in nature. Based on these

assumptions, the Joint warfare concept was used to frame the DDD-III paradigm. A Joint

Task Force (JTF) commander and subordinate component commanders are used as the

base level model. Each team member, or decisionmaker (DM), is responsible for

different but overlapping elements in a common battle space. The forces available to the

DMs are defined not by the individual service, such as Army, Navy, etc., but by the

mission to perform; i.e. land, sea, air.

13

2. Mission structure

The DDD-III scenario requires test subjects to follow a predefined operational

order (OPORDER), while simultaneously defending one or more "penetration zones" and

their own assets, against potential land, sea, and air threats. The OPORDER specifies the

mission, which is represented in the DDD-III as a series of "tasks". Tasks are defined as

abstracted activities (things to do) and can range from taking a beach, clearing a

minefield, or identifying and (if necessary) prosecuting a hostile contact. The scenario

designer can create a template of tasks, with defined attributes, threat capabilities and

movements. Each task template can then be linked together by time, space and/or

precedence to provide a theater level mission for the organization to accomplish.

3. Force competition

Competition over assets is a major issue in the real-world Joint environment.

This competition is used to "force" coordination among the DMs - they must set

priorities, adjusting them dynamically to allocate limited organic and non-organic

resources in such a manner as to achieve the overall mission objective. How teams

coordinate their efforts, under various organizational structures is the focus of this

experiment. The competition for assets is effected through manipulation of the task

structure, task assignment and responsibility, the command structure and communications

structure of the decisionmaking team, etc. The DDD-III allows the scenario designer to

give each DM responsibility for a specific mission area (set of tasks), as defined by

14

OPORDER. The DMs must take action to maneuver their assets/platforms so that tasks

are brought within sensor or weapons range. As the scenario unfolds, a DM who is

prosecuting tasks with his own platform(s) might require additional assets from other

units within the JTF. Thus, the team must coordinate the allocation of assets and

activities, both for information gathering and task prosecution. Limiting or constraining

the assets available to the organization will cause DMs to compete for assets in order to

accomplish their local objectives. This is especially pertinent if the scenario has been

designed wherein several DMs require a resource simultaneously. These scenario design

abilities make the DDD-III a powerful empirical instrument.

15

16

III. DDD-III CORE ELEMENTS

The DDD-III software gives the user the ability to modify dimensions of task and

organizational structure in order to test a specific hypothesis. These dimensions are

considered to be the core elements of the paradigm. We manipulate these dimensions to

study their interactions, and to present to an organization those task conditions that we

believe will elicit the desired changes in organizational structure and response. The

dimensions that can be manipulated are:

• Task (threat/mission/enemy forces)

• Platforms (own forces)

• Organization (command and control)

A. TASK AND TASK STRUCTURE

DDD-III represents all missions, opposing forces and threats as "tasks". During

the play out of an experimental run, tasks appear, move/maneuver, and disappear

according to the designer's scripted scenario. The designer has the ability to define

various dimensions of task structure in order to closely align the DDD-III scenario with

the overall mission (OPORDER) of the JTF. The characteristics of each task; its class,

attributes, and resources required, are tailored to specify the threat (such as a fighter,

minefield, etc.), and to impose situations that will create intra-team coordination (for the

assets necessary) for task prosecution.

17

1. Task type and class

Tasks are objects, categorized as one of three types: air, surface, or ground.

Within each type, tasks are further divided into unique classes according to scenario

requirements. This allows the experiment designer to create, within a given task type a

variety of classes. Examples of ground type task classes are: minefield clearance,

armored columns, taking a ground area, surface-to-surface/SCUD missile sites, and even

"false" tasks. The only real limit to the representative classes is the designer's

imagination - the DDD provides a great amount of flexibility. Each class of task/activity

can be assigned an initial priority, which DM has responsibility, and who has the

authority (or ability) to prosecute the task(s).

2. Task attributes

Associated with each task is a set of (numerical) attributes, written as a vector (A

= [ai, a2,..., an]) that defines the various characteristics of the task quantitatively. These

attributes are used to specify such elements as speed, weapons potential, evasive ability,

IFF status, etc. The number of attributes and their definition depend only on the specific

needs of the problem being studied. (The first two attributes of any task are in fact fixed

in definition: Value and Attack time) The true attribute vector for each task within a

given class is drawn from a normal distribution with a specified mean and standard

deviation. The DDD-III software provides the designer the option to tailor/override the

individual values of attributes on a task-by-task basis.

18

Sensors on board the various platforms obtain measurements of task attributes,

provided the tasks are within their sensor range. The DDD-III has the capability to apply

a level of "noise" and "bias" to these attribute measurements, providing the ability to

obscure the true values from the DMs. If the attributes are needed to identify task class

(e.g., to discriminate a hostile from a neutral, or to identify the class of an incoming patrol

boat), this obscuring of the measurements may result in mis-identifications, a situation

that is very possible in the real-world. The means and standard deviations of the sensor

noises and values of the (circular) sensor ranges can be functions of both task and

platform class.

3. Task attributes-to-resource mapping

The attribute vector gives the DMs requisite information regarding a task's

characteristics. Once a specific task has been identified or classified, the DM must

determine the assets required to prosecute it. Associated with each task is a resource

vector (R = [n, n,..., rm]) that defines the resources required for a successful

prosecution. The designer-defined elements of R can be viewed as generic weapons

requirements, such as ground suppression, mine clearing, anti-air capability, etc.,

depending on the abstraction level of the simulation. Default values for the ri are

generated within the DDD-III via a designer-defined mapping function f(A, ID). This

function generates resource requirements from the attributes of the task and its class. The

DDD-III software also allows the scenario designer to override these values and give a

19

specific resource requirement to any individual task. In the play of the game, subjects are

automatically given the results of the attribute-to-resource mapping based on their current

estimates of A and class ID. This process mimics a staff function recommendation or a

decision support system. Imprecise knowledge of a task's attribute values and/or a mis-

identification of class ID will therefore result in incorrect estimates of required resources

by the DM.

Attributes and resources are the DDD's lowest-tier constructs for representing

information/data and weapons systems. We believe that these are valid constructs for

hierarchical aggregation of activities and assets. This set of constructs precludes the

experimenter from having to build scenarios from the "bottom-up" to study problems at a

large force/component level. By treating task attributes and task resources as two

separate vectors, the DDD-III can be used to study pure (distributed) information

processing problems, pure (distributed) resource allocation problems, or hybrid cases.

For example: in a pure resource allocation context, the attributes can be associated one-

to-one with the resources (ri = ai), with the "measurements" of the ai being made noise-

free. Our first experiment with the DDD-III used just such a construct.

4. Task precedence/prerequisites

A crucial element in scenario design is the ability to assign prerequisites (or

corequisites) to task accomplishment. This is an important dimension of task structure,

as it defines correlations and coordination requirements among the individual activities

20

that combine to comprise the mission as a whole. The earlier DDD-II considered each

task as an independent threat (a "mosquito"), with no consideration given to tasks not

considered threats or potential threats . The precedence structure implemented in the

DDD-III allows for task fan-outs and fan-ins. With respect to task fan-outs, the lack of,

or delay in, accomplishment of a single task can inhibit action on many tasks. For

example: taking a high ground can be a prerequisite for follow-on introduction of forces.

With respect to fan-ins, a number of diverse activities may require completion prior to

mounting a final attack, such as on an airfield (which may be one of the mission

objectives).

A "real" task environment does not usually inhibit a DM from making a decision

or taking an action. In such cases, if actions are completed out of sequence and deviate

from the initial plan, the consequences may be severe. In our empirical research we need

the ability to control task structure to a sufficient degree as to prevent teams from creating

totally arbitrary paths to achieve a final objective. The specification of a prerequisite

mission/task structure (e.g., clearing minefields before landing on a beach), along with

the DDD-III's forcing adherence to this structure, provides the appropriate degree of task

control.

5. Task parallel processing

Parallel processing of a task by several DMs is now supported in DDD-III. This

is a key element in scenario design when assets owned by different organizational units

21

are to be coordinated in time/space for a simultaneous attack. An assault on a hill by a

Marine unit that is simultaneously supported by CAS, artillery, and Naval gunfire is an

example of such a multi-resource activity. The DDD-III "scores" the effectiveness of the

attack as a function of the sychronicity (and correctness) of the allocated assets.

6. Task spawning

Missions in the real-world often develop secondary mission objectives during

prosecution. In DDD-II, task arrivals and disappearances were solely time-driven. No

consideration was given to event-driven task arrivals. In this environment it is difficult to

script enemy actions in response to the actions of the subject team. To compensate for

this short coming, DDD-III was heavily modified to include enemy counterattacks,

medical evacuations, and other tasks that would be "spawned" by a specific action. (Such

as a beach landing). The DDD-III implements an extended task structure by allowing a

primary task to spawn secondary tasks either upon attack of the primary task, or upon

disappearance of the primary task. Spawning allows the scenario designer to provide

dilemmas and conflicts for the organization's decisionmakers. This feature also prevents

a rote scenario, with the team being led down a single path, solely for the sake of the

hypothesis under test. For example, the failure to identify and prosecute an enemy

submarine by a specified time would result in a cruise missile attack upon the CVBG,

thereby creating a new defensive requirement for the team.

22

7. Task removal

Often the existence of a specific mission is linked to another mission being

pursued, whether by own forces or another DM. For example, the complete destruction

of an artillery company by tactical aircraft would negate the requirement for Naval

Surface Fire Support (NSFS) to suppress this position in the future. In DDD-III, tasks can

be linked so as to allow for this possibility. The DDD-III implements a task removal

structure by allowing a primary task to "cancel" a number of secondary tasks upon the

destruction of the primary task. Task removal allows the scenario designer to further

increase the richness of the simulation, providing the DMs with a real-world, responsive

mission structure as the team progresses through the scenario.

B. PLATFORMS AND PLATFORM STRUCTURE

A "platform", or asset, is a basic element of the DDD paradigm that carries

sensors and resources, modeling the teams friendly order of battle elements. Examples of

platforms are ships, helicopters, ground units, bases, etc. A platform may also carry

subplatforms. For example, a carrier can contain helicopters and various fixed-wing

aircraft, and the helicopters can carry sonobuoys, etc. With this nesting ability a

platform/asset structure can be tailored to any level of detail. An amphibious landing, for

instance, can be modeled by a platform-subplatform structure using sea-going platforms

that carry ground units for launch at a shoreline. These ground units may then have sub-

units of their own.

23

The team identifies and prosecutes tasks by allocating/scheduling its platforms,

ideally to make best use of their generic sensors and resources. A platform can be

controlled (i.e., geographically repositioned, commanded to attack, etc.), only by the

current platform owner. Assets have sensor and weapons' ranges, which generally

depend on task type and platform class. A new feature in the DDD-III is that each

platform now has a "be-attacked" range, within which specified task classes can inflict

damage to it. The values for all ranges can be manipulated via the paradigm depending

on the experimental requirements.

1. Platform type/class definition

In a manner similar to tasks, platforms are categorized first by type: air, sea or

ground, and then by class. The number of platform classes and their individual

characteristics depend on the requirements of the experiment. Nearly any military

platform can be represented in an abstracted manner, limited again only by the designers

imagination. All platforms of a given class will have the same parametric features with

respect to sensors, weapons, maximal velocity and available subplatforms. The only

difference among platforms within a given class is their initial owner and location.

2. Subplatforms

Subplatforms are actually platforms located on board another, parent, platform.

These subplatforms provide the DDD-III with a more accurate way to model real-world

24

assets. The "nesting" of subplatforms allows for an additional element in the hierarchical

asset structure. A subplatform does not become an independent platform until it is

"launched" from the parent platform. The DM who owns the parent may launch

subplatforms that will become available after a specified launch time delay. The DM is

limited to those subplatforms available on the parent platform, and may only launch one

subplatform class at a time from each platform. Ownership of the subplatform "child"

can be specified independently. For example, VF assets onboard a Carrier (which is

owned by the CVBG commander), could be owned by the JFACC when they are

launched.

A subplatform is only effective (available for use) for a limited time period.

Subplatforms are either returnable to their parent (such as helicopters), or non-returnable

(such as sonobuoys, missiles, etc.). Once returned, a subplatform is not available again

until a recycle time has elapsed. Subplatforms can also be designated as reusable or non-

reusable. An asset that is non-reusable can only be used to attack once, (such as an

artillery round) whereas a reusable subplatform can attack multiple times, within its

availability window. All parameters relative to subplatform structure and availability are

designer specified in the DDD-III.

3. Platform sensors

Each platform has three types of generic sensors to obtain information on air,

surface, and ground type tasks. These sensors have specified effectiveness ranges,

25

modeled as circular regions, for task detection, measurement, and

identification/classification which depend on platform class. However, the DDD-III

allows the designer to fine-tune these ranges according to individual task classes. Thus, it

is possible to implement an engineer platoon that detects mines at a further range than a

tank column would. For a platform to "see" a task, it must be within the platform's

detection zone; to obtain a measurement of task attributes, the task must be within the

measurement zone; to obtain task class identification, the task must be within the

classification zone. As noted earlier, measurements of task attributes may be

"contaminated" by noise.

4. Platform resources

Platforms also contain weapons (or general resource capabilities) for processing

tasks. The resources on an individual platform (or subplatform) are defined by a

generalized resource vector, or vector of generalized combat capabilities, R = [n, n,...,

rm], where the elements ri are the same as those associated with task processing

requirements. A platform of a given class can be used to attack any task, but the range of

the platform's weapons is a function of task type (or class). In order to engage a task, a

DM must move one or more selected (sub)platforms within range of the task for

(identification and) attack. Once an attack starts the platform(s) are tied-up for a length

of time equal to the task's processing time required, a2.

26

The resources on the platforms assigned to attack a task must meet or exceed

those required by the task for the attack to be rated as successful. If the summation of

allocated resources, on an element-by-element basis, is less than the required amount, the

attack will achieve partial success at best. By giving a specific task a value of R the

DDD-III establishes what (mix of) assets with their corresponding Rs suffice to correctly

process that task. In this vein, platforms can also be made job-specific. For example,

mine-clearing helos could have values for, say, rs corresponding to those required for

mine clearing tasks, but other assets would have lower values of rs, or zero.

The expression for determining the accuracy of the attack on task j, P(j), can be

user-modified. After each attack the DDD-III gives a "gain" to the team of V(j)*P(j) and

a "loss" to the team of V(j)*[l - P(j)], where V(j) = ai = task value. As noted earlier, the

resources required for task processing are a function of task attributes. The DDD

provides each DM with an estimate of resources required, using his/her current estimate

of task attributes and class ID. Thus, accurate task information processing is a precursor

to correct resource allocation. For example, attacking a task defined as a non-threat will

always give P(j) = 0.0.

There is no attrition in the current implementation of the DDD. A poorly done

attack, an enemy penetration of a defense zone, etc., result only in point loss, and not in a

loss of assets or asset capability. This was done so that the resources available are not a

(uncontrollable) function of the team's sample path through the scenario. This is critical

to controlled experimentation since the task/mission structure is generally predicated on

27

asset availability. If task structure is to be an independent variable, the total assets

available should remain constant, or else the team should be allowed to restructure the

mission.

C. ORGANIZATIONAL AND ORGANIZATIONAL STRUCTURES

Organizational dimensions refer to the ways in which a multi-person organization

is structured. These dimensions include authority, resource, information and

communication structure. The structuring of a large organization must maintain a general

congruence with the task structure to assure that DMs assigned to subtasks have the

resources and information required (or can obtain them via a request chain), can

communicate with other DMs with whom they need to coordinate, and that the "chain of

command" that is established facilitates successful mission completion. Organizational

design is a multi-dimensional problem, where one dimension cannot be changed without

considering concomitant changes in other (supporting) dimensions. The dimensions

supported in the DDD-III are described below.

1. Command/authority structure

Military organizations adopt a command hierarchy to structure the overall

decisionmaking process. The DDD-III allows for tailoring a "chain of command",

provided that each DM in the organization has no more than one "boss". We use a

general acyclic tree structure to code the command hierarchy by giving to each DMj a

28

single integer c(j) < j that defines to whom DMj reports. Command structures ranging

from totally disconnected [c(j) = j], to totally flat [c(j) = 0], to totally serial [c(j) = j-1] can

be treated in this construct. For example, in our experiment wherein two units reported

directly to the CJTF (DM0), and two other units reported to a common mid-level

functional commander (DM1), we had C = [0,0,0,0,1,1].

This generalized authority or command structure is operationalized via task

assignment and platform/asset assignment capability. As only those DMs assigned to a

task are allowed to prosecute it, a leader can control dynamically the coordinated actions

within his (sub)team, and reassign platforms according to mission need.

a. Task assignment

In the DDD-III a DM can (re)assign or co-assign a specific task to any

subordinates DM in his/her sub-organization (subtree). Assignments cannot be made

upward nor laterally. Assignments are constrained in that: i) a task cannot be taken on

unilaterally, i.e., the task must have already been assigned to someone in the subtree, and

ii) the task cannot be given away unilaterally, i.e., assigned away from all DMs.

b. Platform assignment

The DDD-III operationalizes a DM's authority over the assets in his/her

sub-organization in two ways. He can advise a subordinate DM to transfer his asset(s) to

another DM, or he can independently and unilaterally force a transfer action. If an asset is

29

owned by someone outside of his sub-organization, then all that a DM can do is to

request use ofthat asset (from the owner or via the chain of command).

2. Resource access structure

This defines both platform ownership and the "rules" by which platforms can be

requested, transferred, and accessed. At any given time each platform is controlled by the

DM who owns it. If a platform is defined as transferrable, it can be transferred during the

simulation from one DM to another, either by the owner or by any of the owner's

superiors acting through the chain of command. Other platforms can be defined as non-

transferable, e.g., the amphibious ships (which belonged to the ARG), and the aircraft

carrier (which belonged to the CVBG) in experiment 1. The transfer of an asset from one

DM to another requires a finite (user-specified) time delay, during which period the asset

is "locked up," or inhibited from accepting other commands.

A subplatform nesting structure, wherein the "owner" of a platform is not

necessarily the owner of its subplatforms, is supported within the DDD-III. Some

subplatforms can also be assigned permanently to the parent asset irrespective of

ownership, such as a ship's self-defense assets.

3. Information structure

The information (access) structure describes how data collected by platform

sensors is distributed to the various DMs in the organization. The information structure is

30

operationalized in the DDD-III by defining an information network. Each DM can be

assigned a level of "tie in" to the information network depending on task type. Each task

class can be tailored to be viewed differently by each platform class, allowing for a truly

robust and diverse information architecture.

For example, a leader (who is responsible for global coordination) can be

provided with global information, while other DMs can be given more detailed local

information depending on their local decisionmaking responsibilities. A centralized,

partially centralized or decentralized information structure can be created by setting the

different network "tie in" levels by task/platform class for different DMs. In the first

experiment a common operation picture, or true Global Battle Space Awareness, was

used. Each DM was able to see in real-time the location of all contacts detected in the

task force operations area. However, detailed attribute data needed for resource

allocation and/or classification was sometimes only provided to the local DM assigned to

that task.

4. Communications structure

The communication structure specifies who can send messages to whom, and also

includes parametric data such as receipt delays, equipment delay and "bandwidth". By

preventing communications between certain units and forcing communications up and

down a specific chain of command we are able to observe the impact of different

31

Communications structures not just in isolation, but more interestingly in its relationship

(interaction) with other structural dimensions.

In running the DDD software we generally inhibit verbal exchanges among DMs

in order to ease subsequent analysis of the communications data. Thus, computer-

mediated cornmunications is the only way by which DMs can share local information

about task attributes and ID, request assets, and coordinate actions. The communication

among DMs is effected through the graphics user interface via a set of preformatted

commands:

Request information: ask a DM to send his local information about a task.

• Transfer information: transfer one's local information about a task to

another DM.

Request platform: ask a DM to transfer the ownership of a platform to

another DM.

Transfer platform: inform another DM that a platform is being

transferred to him (or that an earlier request is being denied).

Coordinate action: several choices are available in this command and

can be easily changed to accommodate specifics of the simulation:

- Ask another DM to either handle, support, or ignore a task.

- Tell other DMs of one's intent to handle, support, or ignore a

certain task.

Copies of all messages sent by a DM (except for information requests/transfers)

32

are automatically sent to that DM's superior in the chain of command. This keeps the

higher-level DM apprised of the needs/activities of his subordinates, and is an attempt to

capture overheard (open) message flow on a DM command net.

To represent communication and data processing delays, the DDD places a time

delay on a message transfer. To model a limitation on channel capacity (or channel

access), the number of communications (N) in a fixed time window (T) can be specified.

D. DATA COLLECTION

The first three core elements of the DDD-III were dimensions to be manipulated

to pursue the experimental hypothesis. The last element and possibly the most important

is that of data collection. As stated earlier, one of the critical requirements for our

simulation paradigm was useful data collection and retrieval. Data collection can be

broken into two subject areas - the data to be recorded, or measures; and the method by

which the computer system records this data.

1. Measures

The A2C2 experimental scenario designer needs the ability to specify exactly

what measures would be recorded and in what format these measures would be presented.

The measures for the tier-I experiments can be broken down into two major groups;

performance and process.

33

a. Performance

Measures within the performance category represented the overall scores

of the decisionmaking team in regards to mission accomplishment and team strength.

The emphasis here was in accomplishing the task, not in how it was done. These

elements included team strength and the time it took for the accomplishment of tasks or

series of tasks.

b. Process

Measures within the process category recorded the mechanisms by which

the team accomplished the missions. This set of measures was critical in analyzing the

data in regard to the overall experimental hypothesis. These measures can be further

broken down into two broad areas:

• Communications - A critical measure of the tier-I experiment was

the interaction between the lower level commanders and the

command hierarchy. This set of measures indicted

communications pathways, time of replies and method of

requesting assistance.

• Decisionmaking - There were several measures that indicated the

teams ability to solve problems, such as competition of assets, and

how well the team was working together. One example of this type

of measure was the competition score. It was expected that this

34

measure would be an indicator of the degree to which the

intermediate level of hierarchy contributed to resolving, or

reducing competition [Ref: 3].

2. Output files

The ability of the DDD-III to provide rapid data retrieval capability was essential

to our experiment. The software was designed to present data in two separate files; the

Log file and the Dependent variable file (dep file).

a. Log file

The log file is a record of all actions that occurred within the scenario.

The file is time-tagged and can be used to replay the entire scenario. This feature is of

tremendous benefit to the experimental designer, who, at a later time, can designate

additional measures and re-run the scenario to recollect the new measures.

b. Dep file

The Dep file is defined by the experimental designer prior to the scenario

run. The content of the Dep file can be a direct report of measures or an aggregation.

Available immediately following a scenario run, the Dep file provides the ability to

perform analysis on-site.

35

36

IV. DDD-III EXPERIMENT PHASE I SCENARIO
DESCRIPTION AND REQUIREMENTS

The DDD-III software provides a mechanism to empirically investigate proposed

Command and Control theories in a laboratory environment. For the application to the A2C2

project, the general elements of organization, assets and threats discussed in the first three

chapters were used to abstract a specific Joint warfare simulation. In this chapter the specifics of

the phase one A2C2 experiment will be covered.

A. EXPERIMENT ONE HYPOTHESIS

The initial A2C2 experiment was designed to investigate the general hypothesis that

there is an interaction between task structure and organization structure. As stated earlier, the

context for this experiment was that of a Joint task force, involving or not involving the use of

common functional commanders. For our purposes then the hypothesis can be summarized

more effectively as follows: "An organization with a common functional commander is better

for certain tasks than an organization without one." The goal of this phase one experiment was

to determine a feasible method for testing this hypothesis using the DDD-III, to implement the

method chosen, and to obtain results for later analysis.

The situations in which common functional commanders were expected to add value

formed the basis for the two specific hypotheses tested in this experiment:

37

• An organization with a common functional commander is better for tasks that

require coordination between units in this functional area for the use of assets

owned by one of them.

• An organization without a common functional commander is better for tasks that

require coordinated use between units in this functional area of assets not owned

by any of them.

The specific variables manipulated during the phase one experiment revolved around

levels of competition that can were created by limiting assets. Further discussion of these

manipulations is addressed by Berigan [Ref 4 and 5].

B. IMPLEMENTATION

The experiment was conducted using a network of SUN SPARC workstations located

in the Naval Postgraduate School - Systems Technology Laboratory (STL). The players were

physically in the same room, although dividers were placed between them to limit any scenario

knowledge gained by observing the other team members. Talking was restricted during the

simulation runs, with communications among players restricted to the preformatted computer

messages built into the DDD-III.

C. SCENARIO DESCRIPTION

1. Geographic/geopolitical

The scenario chosen was representative of a "typical" future requirement for US forces.

Orange, a North African nation friendly to the United States, has been attacked by Green, whose

38

forces have taken control of Orange's port of Eastport. Upon direction from the National

Command Authority a Joint Task Force (JTF) has been organized by the theater commander in

chief, the Commander in Chief, Mediterranean Command (CINCMED), in order to capture the

port and a nearby airfield to allow for the introduction of follow-on forces. The Commander,

JTF (CJTF) has at his disposal an aircraft carrier battle group (CVBG) and an amphibious ready

group (ARG) that transports two Marine Expeditionary Units (Special Operations Capable)

(MEU(SOC)s).

2. Mission and Execution

Green forces are located at the port, the airfield, and at other locations in the amphibious

objective area. About 5 miles south of the port, there are two suitable landing beaches with a

road leading from the northernmost beach (designated "Red Beach") to the port, and another

leading from the southernmost beach (designated "Blue Beach") to the airfield.

The forces from MEU1 and MEU2 will land at Red and Blue Beaches, and proceed along the

roads to capture and secure the port and airfield, respectively. They will use their own assets and

request the CJTF's assets as necessary to clear mines at the beaches, conduct MEDEVACs,

defeat counterattacking armored units, clear mines along the roads, suppress Green artillery,

destroy Green FROG launchers, and capture the port and airfield.

The maritime units (CVBG and ARG) support the amphibious operation with CAS,

NSFS, mine countermeasures, and air defense assets, while defending themselves against air,

39

surface, and subsurface threats. They will use their own assets and request the CJTF's assets to

destroy Green submarines, fixed-wing aircraft, helicopters, patrol boats, and Silkworm

launchers, as necessary.

3. Competition

As stated earlier, competition is used to "force" coordination among the DMs. The

competition for assets is operationalized by manipulating the tasks presented to the

decisionmaking team so as to require assets in several places simultaneously. The two major

command structures utilized during the scenarios were designed to allow for asset competition at

either an organic or a non-organic level. Each scenario module represented asset competition for

a different DM team - for example, scenario "A" presented situations that could be resolved if the

organic assets were properly coordinated. The ground component units (MEU1 and MEU2)

competed for MEUl's engineer platoon and Cobras and MEU2's MEDEVAC helicopters. The

maritime component (ARG and CVBG) competed over the ARG's Stinger platoon and the

CVBG's Aegis cruiser, frigate, and section of CAP aircraft. Non-organic assets that were not

competed for, but were used in the scenario. In scenario "B" the organic and non-organic assets

were the same (as in scenario A), however, the scenario was crafted such that organic assets were

not competed for, while the non-organic assets were. Scenario B unfolded as did Scenario A,

except that competition occurred in different events (i.e., "tasks").

40

D. ABSTRACTION

The real challenge of implementing this experiment was in the attempt to accurately

depict elements of the real-world and the joint environment through the use of the DDD. The

higher level simulators examined in chapter two all contain displays with exceptionally high

resolution of the tactical picture, which of course requires extensive software. The DDD

simulation required that the decisionmakers be able to identify basic geography, threats and

resources as an abstraction of the real-world. Additionally, crucial elements of command and

control needed to be modeled. A brief description of these various abstracted elements is

contained below:

1. Information structure

One of the major assumptions behind the concept of organizational "flattening" [Ref 5] is

the existence of a common operational picture (COP). All commanders at all levels must have a

common view of the battle space - they must see the same threats, at the same time. Since our

purpose was to test organizational structures in a future environment of shared, global

information, the COP concept was a "given" for this experiment. When one decisionmaker in

the organization saw a threat or task, it was seen by all others at the same time. It was felt that

this common view might reduce parochialism in certain circumstances, through fostering of

shared mental models among team members.

The DDD-III, however, has the capability to control the amount of "shared" information

available to the DMs. This is accomplished using the Task View command, which determines

the team information structure for the detection and measurement of a specific task class by any

41

platform owned by a specific DM. This command can be used by the simulation designer to

tailor the tactical picture of the DMs to model various degrees of "Global awareness".

Example: task view 0222222

Format: task view id v(0) v(l) v(2) ... v(ndm-l)
id: integer number, uniquely identifying the task class.
v(I): number which specifies the degree to which the decisionmaker

Dmi can observe this class of tasks.

= 0: DMi cannot see a task of this class unless the task happens to be
within the detection range of at least one of his own sensors.

= 1: DMi can see a task of this class if the task is detected by any of the
sensors on platforms owned by other DMS.

= 2: DMi can see a task of this class and get attribute/class information
if the task is within the measurement/identification ranges of any
of the sensors on platforms owned by other DMS.

Figure 4-1: example of task view command

An example of task view is shown in Figure 4-1. In this instance, task class 0 task view was set

to 2, which allowed all DMs to see a task 0 contact once in range of any. platform sensor.

2. Command structure

Two distinct levels of organizational structure were used for this experiment, each with

its own unique requirements and characteristics:

Three tiered: Composed of a CJTF plus a common functional

commander, either a ground component commander (GCC) or a maritime

component commander (MCC), supervising the two lowest-level units

(MEU1 and MEU2, or the CVBG and ARG, respectively).

42

Two-Tiered, with the lowest-level units (MEU1 and MEU2, or CVBG and

ARG) reporting directly to the CJTF

Although the two-tiered and three-tiered structures were separated for analysis, the two

JTF organizations that were used for the experiment each had an intermediate commander

supervising one component and none supervising the other. Thus, in half of the runs there was a

GCC, while in the other half there was an MCC. This was done in order to keep the number of

subjects constant across all trials, and avoid task-load-per-individual problems that would have

3-Tier Ground Hierarachy

2-Tier Maritime Hierarachy

2-Tier Ground Hierarachy

3-Tier Maritime Hierarachy

CJTF CJTF

\ 1 1
GCC 1 ARG CVBG MEU 1 MEU 2 | MCC

|
1 1 1

MEU 1 | MEU 2 ARG CVBG 1

Fi gur< 5 4-2 : Graph ical representatio n of cor rim and stn ucture

arisen had the two structures been composed of different numbers of subjects. The two

organizational structures are depicted in Figure 4-2. The command and communications

structures were operationalized via two separate commands.

43

a. Decision Structure

The decision structure command is used to define the number of decisionmakers

present in the simulation, as well as the command structure they are contained within, (in

reference to the other decisionmakers) This allows the scenario designer to specify command

structure, which affects authority/responsibility and asset control issues among decisionmakers.

Only acyclic structures are supported in DDD-III.

Example: decision structure 6
CJTF GCC MEU1 MEU2 CVBG ARG
0 0 1 10 0

Format: decision structure ndm
name(0) name(l)... name(ndm-l)
cd(0) cd(l)... cd(ndm-l)

Figure 4-3: example of decision structure command

Figure 4-3 shows the decision structure assigned for one set of phase one scenarios.

There are six decisionmakers defined for this scenario. DM1 is assigned the name CJTF, DM2 is

assigned the name GCC, etc. This command sets the three tiered ground, two tiered marine

structure previously discussed, with CJTF as overall commander, GCC, CVBG and ARG

reporting to the CJTF and the two MEU's reporting to GCC.

b. Communications Permission

After the command hierarchy is determined the question of communications

connectivity must be addressed. Although the DDD-III provides the ability to address command

and communications separately, within this phase one experiment the communications abilities

paralleled the command structure. The communications permission command sets the

44

Communications structure for the decisionmakers within the simulation. If a communications

link exists from decisionmaker i to j, DMi can request/send resources, information and

action/intention messages to DMj. The communications structure used for one set of phase one

experiment scenarios is shown in Figure 4-4.

Example: communication permission
0 1111
10 111
0 1 0 1 1
0 110 1
11110
111110

Format: communication permission
P(0,0) P(0,1) ... P(0,ndm-1)
P(1,0) P(l,l) ... P(l,ndm-1)
P(ndm-1,0) P(ndm-l,l)... P(ndm-l,ndm-l)

P(i j) = 1, DMi can communicate with DMj. (i.e. link exists from I to j)
=0, DMi can't communicate with DMj.
Default: all diagonal elements are 0, the rest are 1

Figure 4-4: example of communications permission command

For this example (three tiered ground, two tiered maritime) all decisionmakers could

communicate with each other except for MEU1 and MEU2, who were forced to pass all requests

for CJTF's assets and messages through the GCC. This was implemented by setting all

communications between DMs to 1, with the exception of the MEUs to CJTF connections, which

were set to 0, preventing direct communications.

3. Own Forces available

Assets owned by the five organizational entities (the sixth, the GCC/MCC depending on

the scenario, did not directly own assets) were derived from U.S. assets currently available in the

45

real-world. Each asset had to be represented within the scenario as a platform. Those assets

chosen and available for use in this scenario are as follows along with their initial owner:

a. MEU(SOC)l

One AAAV-mounted infantry company

One V-22 Osprey-mounted heliborne infantry company

One division (4) AH-1W Cobra attack helicopters (indivisible)

One V-22 mounted combat engineer platoon

Naval Surface Fire Support (NSFS) from one destroyer

b. MEU(SOC)2

One AAAV-mounted infantry company

One V-22 Osprey-mounted heliborne infantry company

One section (2) MEDEVAC helicopters (indivisible)

NSFS from a second destroyer

c. CVBG

Aircraft Carrier

AEGIS cruiser

Antisubmarine Warfare (ASW)-capable frigate

Combat Air Patrol (CAP) section

46

d. ARG

Two destroyers providing NSFS for MEU's

Amphibious ships

One V-22 mounted Stinger platoon (indivisible)

One section of CAP

e. CJTF

Two sections of close air support (CAS) aircraft

One mine countermeasures (MCM) helicopter

One section of SH-60 helicopters for anti-surface warfare (ASUW)

One V-22 mounted heliborne infantry company (JTF reserve)

SR-71 photo reconnaissance mission

One section of JFACC F-15's for air defense

The scenarios were designed so that if a DM must perform a specific task, then the assets

required should be transferred to that DM, rather than the original owner attempting to perform

the task for the unit that required the asset. For example, if MEU2 was under attack by a tank

column, we wanted MEU1 to transfer the necessary asset (the Cobra helicopters) to MEU2 to

destroy the tanks, rather than MEU1 trying to destroy the tanks itself.

The abstraction of the assets into DDD-III platforms required that the function of the real-

world platform be reviewed and that the value of the resources be assigned accordingly. The

47

resource vector was chosen to contain seven individual elements, corresponding to the asset's

ability to perform the following seven missions:

Air - attack air targets

Sea - attack sea target

Grnd - Attack ground targets

Hold - once taken, the ability to hold ground

Mine - the ability to sweep for mines, both land and sea

Armor - the ability to attack armor

Med - the ability to conduct medivac missions

A listing of the platform classes and their resources is contained in Table 4-1. These

resources reflected the relative "power" assigned to that platform class based on real-world

capabilities of assets. For example - a land based fighter (class 2) has tremendous capability

against air threats, but is less effective against sea and ground threats. The fighter has no ability

to hold territory, destroy mines or conduct a medivac mission, so the value for these attributes is

zero. All assets in the scenario were transferrable, with few exceptions. The non-transferrable

assets included such assets as the amphibious shipping and the aircraft carrier, which were not

directly needed to accomplish tasks.

If the asset owner chose not to transfer an asset as requested by a DM needing it, a higher-

level decisionmaker could force transfer of the asset(s). For example, if the ARG requested an

asset from the CVBG, and the CVBG ignored the request, the MCC (if present) or CJTF could

48

forcibly transfer the asset from the CVBG to the ARG, if he determined that the ARG's need for

the asset outweighed that of the CVBG.

Assigned Resources Values
Platform name Air Sea Grnd Hold Mine Armor Med
0 Test platform 50 50 50 50 50 50 50
1 Carrier Fighter 5 2 0 0 0 0 0
2 Land based fighter 5 1 1 0 0 0 0
3 Carrier strike 0 5 5 0 0 5 0
4 MCM Helicopter 0 0 0 0 5 0 0
5 ASUW helicopter 0 6 0 0 0 0 0
6 Cobra helicopter 0 0 5 0 0 10 0
7 Huey helicopter 0 0 5 5 0 0 0
8 Huey (medivac) 0 0 0 0 0 0 5
9 engineering platoon 0 0 0 0 5 0 0
10 Recon aircraft 0 0 0 0 0 0 0
11 Standard missile 5 10 0 0 0 0
12 NSFS mission 115 0 0 2 0
13 Stinger Det 6 0 0 0 0 0 0
14 FFG(ASW platform) 15 0 0 10 0
15 Carrier 110 0 10 0
16 CG (AAW platform) 110 0 10 0
17 DDG (NSFS platform) 110 0 10 0
18 DDG (NSFS platform) 110 0 10 0
19 Amphibious platform 110 0 10 0
20 Amphibious platform 110 0 10 0
21 Amphibious platform 110 0 10 0
22 LCAC 1 0 0 0 0 0 0 0
23LCAC2 0 0 0 0 0 0 0
24AAAV 0 0 5 5 0 1 0
25 Shore bases 0 0 0 0 0 0 0

Table 4-1: Assigned values of Platform resource vectors

/ Subplatform structure

Some of the platforms available to the DMs were represented as subplatforms,

representing real-world asset structure. Figure 4-5 shows the assignment of subplatforms to

platform used in this phase experiment. The number of subplatforms available to the DM was a

combination of real-world capabilities and the desire to drive competition for the assets. A more

detailed description of the platform Subplatform command can be found in chapter five.

49

#Aircraft carrier carrying: fighters, Combat Air Support(CAS), anti-ship helicopters
platform Subplatform 15 3

VF VA H60
3 2 1
4 0 0

Cruiser carrying: SAM missiles
platform Subplatform 16 1

SAM
10
-1

Destroyer 1 (MEU 1 asset) carrying 5 Inch fire mission
platform Subplatform 17 1

51
10
2

Destroyer 2 (MEU 2 asset) carrying 5 Inch fire mission
platform Subplatform 18 1

51
10
3

amphibious ship (MEU1) carrying: AAAV and attack/troop/engineer helicopter
platform Subplatform 19 3

HCB HTP HE
1 1 1

amphibious ship (MEU2) carrying: troop/medivac/engineer helocopter
platform Subplatform 20 3

HTP SD HMV
1 1 1
3 5 3

amphibious ship (CJTF) carrying : mine-countermeasure helicopter/troop helicopters
platform Subplatform 21 2

MCM HTP
1 1
0 0

sigonella base providing: Fighters, reconnaissance
platform Subplatform 25 2

F15 SR7
1 1
0 0

Figure 4-5: example of Subplatform assignment for the scenario

50

4. Enemy forces presented

The scenario was designed so that each threat (or "task" to be accomplished) could be

defeated (or accomplished) by only one asset in that given situation. This "matching" of assets to

tasks was done in order to induce the proper competition, and internal coordination, among the

DMs for limited JTF assets. The DMs were briefed prior to the game and understood the

relationship between various threats and the assets needed to properly engage that threat.

a. Threats presented to the landing forces

Mine fields offshore of one or both beaches

One or more company-sized armored units

Mine fields on roads (swamps restrict off-road travel)

A number of artillery strong points

Possible hidden FROG surface-to-surface missile launchers

Heavy mortar platoon in range of Red Beach and port

Infantry units defending the port and airfield

b. Threats to the maritime forces

One or more Alfa-class submarines

MI-24 Hind and fixed wing aircraft, capable of anti-ship actions

Fast patrol boats

One or more hidden Silkworm anti-ship missile launchers

51

The abstraction of the threat into DDD-III tasks required that the function of the

real-world platforms be reviewed and that the value of the task attributes be assigned

accordingly. These attributes reflect the difficulty of the task as well as the relative importance.

Through the mapping discussed in section 5 of this chapter, the attributes were coupled to the

resources required. For our scenario the assigned attributes for twenty-three task classes are

shown in Table 4-2.

Task name
0 Hills

Value Time Air Sea Grnd Hold Mine Armor Mftd Enemv
10.0 20.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0

1 Airport 30.0 20.0 0.0 0.0 10.0 0.0 0.0 0.0 0.0 1.0
2 Seaport 30.0 20.0 0.0 0.0 10.0 10.0 0.0 0.0 0.0 1.0
3 Hold ground 0.0 10.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 1.0
4 Take ground 10.0 10.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 1.0
5 Artillery 2.0 10.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 1.0
6 Frog Launcher 10.0 20.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 1.0
7 Silkworm 15.0 20.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 1.0
8 mines (land) 5.0 10.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 1.0
9 mines (sea) 5.0 10.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 1.0
10 Strike air 15.0 20.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
UTACair 4.0 20.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
12 Helicopter 15.0 10.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
13 neutral air 10.0 10.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
14 Tanks 5.0 10.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0 1.0
15 Neutral (grnd) 10.0 10.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0
16 Patrol boat 15.0 10.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 1.0
17 Submarine 15.0 10.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 1.0
18ASCM 15.0 10.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 1.0
19 Neutral sea 10.0 10.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0
20 Medivac 5.0 60.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0
21 Swamp 2.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
22 Silkworm (ail ■) 15.0 20.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 1.0

Table 4-2: Assigned values of task attribute vectors

1.0

5. Mapping of Resources (own forces) to Attributes (enemy forces)

A basic element of the experiment was competition between DMs over assets necessary

for completing a given task or series of tasks. A mechanism was required to couple the resources

52

required to prosecute a task with that tasks' attributes. Based on the expected paths taken in the

scenario, the platforms provided and the threats presented, the attribute and resource vectors were

tailored to force specific platform/threat match-ups. Although the DDD-III allows any asset to

attack any threat, as long as the appropriate flags are set, full points are only awarded when the

threat is attacked by assets having the correct match-up of resources to those required.

This "mapping" of threat attributes to resources required was accomplished using the

task mapping command. This command specifies a linear mapping from the attributes of a task

class to the resource requirements for a successful attack on that class. Figure 4-6 provides an

example of the command.

Example:

Format:

task mapping 0
0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00

task mapping id
A(l,l) A(l,2) ... A(l,natt) B(l)
A(2,l) A(2,2) ... A(2,natt) B(2)
A(nres,l) A(nres,2)... A(nres,natt) B(nres)

Figure 4-6: Example of task mapping command

This structure of the mapping for the resource vector allows for an assignment of attribute

values to resource values and for the addition of a constant. This allows the simulation designer

to control the resource match up between tasks and platforms, which enables a representation of

53

the differences in firepower and engagibility found in the real-world. The specific assignment of

attributes to resources for the scenario is shown in Figure 4-7.

Attributes Resources
Name # Name
1 Value
2 Time
3 Air 1 Air
4 Sea 2 Sea
5 Ground 3 Ground
6 Hold 4 Hold
7 Mine 5 Mine
8 Heavy/armor Task 6 Heavy/armor
9 Medivac 7 Medical
10 Enemy (Recon)

Figure 4-7: Attribute to Resource assignment

For example, the VA, or strike aircraft platform, was the only asset with the correct resource

values to attack the frog launcher, thus causing possible competition between the DMs over that

asset. This example is shown in Figure 4-8. The armor resource of the strike aircraft was set to

5.0, which matched the armor attribute of the Frog launcher. Because the mapping of the armor

resource to attribute was one-to-one, any attack on the frog launcher by a VA aircraft would be

considered successful.

Value Time Air Sea Grnd Hold Mine Armor Med Enemy

Frog Launcher 10.0 20.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 1.0

Air Sea Grnd Hold Mine Armor Med

VA (strike aircraft) 0.0 5.0 5.0 0.0 0.0 5.0 0.0

Figure 4-8: Resource and attribute vector comparison

54

V. DDD-III EXPERIMENT PHASE I - SIMULATION DEVELOPMENT ISSUES

As in most computer simulations the challenge to the simulation designer is to

model the "real", physical world within the software world. From an experimental

viewpoint it is crucial that the model operate according to real-world rules. A major

artificiality can cause unwanted deviations in the results. It is equally important that the

displays mimic as closely as possible the information provided in the real-world. Many

unique applications of the generic DDD-III commands were developed in order to

represent the Joint world as accurately as possible. Elements of the real-world needed to

be abstracted that did not fit the generic mold of a direct threat - such as geographic

features and stand-off weapons. The challenge was to model these elements without

extensive software modifications or complex commands that would consume the scenario

designer's time and distract from the true goal of the simulation.

A. GEOGRAPHY

Since nearly all simulation information is provided to the DMs via a monitor

display, it is important from a playing point of view that the display be both

understandable and reasonable. For the results of the experiment to be valid it is also

important that the display mimic the information provided in the real-world. Some

elements of the display were easy to model - land and sea areas were created with little

modification to the existing software. Others, however, were fairly complex to represent

55

and required work around solutions to be developed. Several of the more important

geographic representations are covered below.

1. Beachhead

The scenario's general premise, that an amphibious landing would be the primary

method of putting troops on the ground, required that a beachhead landing area be

provided to the DMs. Additionally, the designers needed to "force" the location of the

landing areas to set up follow-on engagements, (i.e. a starting point). From a practical

point of view, the beach areas needed to be clearly defined so that the MEU commanders

had an idea of where they could place elements ashore. Finally, we knew that during the

scenario elements of the MEU would remain at the beachhead, in order to perform

medivac tasks; the enemy would target these elements, using the beaches as target areas

for artillery attacks.

We chose to implement the beach areas as penetration zones, which clearly

indicated to the DMs where the beaches were located and allowed a method for

monitoring and scoring of attacks by enemy forces. Via the task penetration the beach

penetration zone(s) were set to be sensitive to only artillery and Frog missile task classes,

which represented forces used by the enemy against the landing area. At various preset

times during the scenario an artillery threat would appear, which if not suppressed would

(after a set period of time) attack the beach area. The penetration zones and sensitivities

are shown in Figure 5-1.

56

penetration number 7

penetration zone circle 0 25.00 45.00 5.00 (port area)
penetration zone rectangle 2 26.5 70.00 4.00 6.0 (beach area one)
penetration zone rectangle 3 26.5 80.00 4.00 6.0 (beach area two)
penetration zone circle 4 5.00 95.00 5.00 (Airfield)
penetration zone circle 5 70.00 15.00 7.00 (fleet area (CVN))
penetration zone circle 6 64.00 75.00 4.50 (fleet area amphib))

task penetration 0 0000000 (hill mission)

task penetration 5 0 0 1 10 0 0 (artillery)
task penetration 6 0 0 1 10 0 0 (frog missile)

task penetration 23 0000000 (silkworm - launcher)

Figure 5-1: Example of penetration zone command with task penetration defined

Other areas also implemented as penetration areas were the port and airfield, as

well as the two fleet areas located around the CVBG and the ARG. This provided an easy

method to target friendly forces with various enemy threats, such as the silkworm missiles

and tactical aircraft.

2. Cities

In the earlier DDD-II paradigm there were no enemy "bases". The simulation

only allowed the DMs to defend areas, not to go on the offensive. This was not

acceptable in the DDD-III paradigm. We needed to abstract the mission objectives of a

typical Joint military scenario, which included offensive or strike capability or movement.

57

The scenarios in the experiment included several cities, an airport and a port

facility, all of which would be important to the amphibious landing forces. The cities

were relatively passive representations - the only requirement was that they exist. The

scenario required that the DMs discriminate between real and "false" silkworm launchers

within the cities to complicate the strike issue (i.e., minimize civilian casualties).

draw rectangle 27.0 49.5 2.5 4.0
draw rectangle 27.0 64.5 2.5 4.0
draw rectangle 27.0 87.0 2.5 4.0

Figure 5-2: Example "cities" using draw rectangle
command

As shown above in Figure 5-2, the cities were displayed as small rectangles, their

locations included in the OPORDER brief presented to the decisionmaking team prior to

the start of the scenario.

3. Port/Airport areas

The airport and seaport required a more extensive representation than did the

cities. Both the city and the port were final mission objectives, so the implementation

method needed to not only provide a visual reference for the DMs but also to specify the

resources required to take the mission objective. The port and city needed to be set up as

individual tasks to be accomplished, thus providing a mechanism to record team mission

completion. The solution was to create a separate task class for each objective.

58

task 1: ground mission (airport)
task general 1 G AP 0.00 0.211 9 dullas.icon
task mean 1 30.0 10.0 0.00 0.00 10.00 10.00 0.00 0.00 0.00 1.0
task view 12 2 2 2 2 2
task stealth 1 0 100.0 100.0 100.0 00.0 0.0

task stealth 1 23 100.0 100.0 100.0 00.0 0.0
task attack 1 1 111111

task 2: ground mission (seaport)
task general 2 G SP 0.00 0.211 9 norfolk.icon
task mean 2 30.0 10.0 0.00 0.00 10.00 10.00 0.00 0.00 0.00 1.00
task view 2222222
task stealth 2 0 100.0 100.0 100.0 00.0 0.0

task stealth 2 23 100.0 100.0 100.0 00.0 0.0
task attack 1 1 111111

Figure 5-3: Example of mission tasks (Airport and Seaport)

Figure 5-3 shows both the airport and seaport task classes created. The task

classes created had no velocity and were in a fixed location. The threat flag assigned was

a 9, which indicated to the scenario generator that both tasks represented missions to be

accomplished. Unique icons were used for both the airport and the seaport. The task

view command, as well as the task stealth command, were set so that the city and port

were known and visible to all DMs throughout the entire scenario, since the location of

major cities would be known to the forces landing.

Each task class required a unique combination of ground and heliborne assets to

properly complete the task, which was done by using the task mean command to assign

unique values for the air and ground attributes. The values assigned assured that the two

59

ground force DMs, MEU1 and MEU2, would require additional assets to complete their

missions, creating possible competition between the DMs.

4. Land obstacles

We wanted to closely model the real world environment encountered by troops,

which would contain roads, impassible areas, hills, etc. Additionally we had an

experimental requirement - the two ground forces needed to advance towards their

objectives, and reach them, at roughly the same time. A mechanism was needed to

prevent a "mad dash" to the objective by the ground forces. There obviously would not

be any competition of assets if the forces were so out of sync that one could use the

needed asset, while the other force was still on the beach. This "slowdown" of the forces

was accomplished as follows:

a. Roads

The primary mechanisms employed to "channel" the ground forces were

roads, connecting the beaches to both the airport and the seaport. The teams were

briefed, via OPORDER, that off-road travel was prohibited and that the ground was to be

considered impassable. A line drawing command, which gave the designer the ability to

draw lines between sets of XY coordinates, was added to the DDD-III to provide the

ability to represent the roads in the scenario.

60

b. Swamps

After the roads were clearly defined the question still remained how to

ensure the ground units would travel only on the roads. Though there was a chance that

the teams would choose to remain on the road without incentive, it was felt that a

mechanism was needed to make the land truly impassable, ensuring compliance with the

OPORDER. The general philosophy used was to make leaving the road a bad choice,

but not an asset killer or game ender. A penalty (loss) would be assigned to the team,

regardless of which DM caused the violation. The penalty was large enough to be

annoying but small enough that overall performance measures would not be skewed.

Implementing this impassability condition required tailoring a task class to represent a

"swamp" threat, shown in Figure 5-4.

task 21: Swamp
task general 21 G SM .00 0.211 2 swamp.icon.no label
task mean 21 2.0 10.0 0.00 0.00 20.00 0.00 0.00 0.00 0.00 0.00
task view 21 2 2 2 222
task stealth 21 0 100.0 100.0 100.0 00.0 0.0

task stealth 21 21 100.0 100.0 100.0 00.0 0.0
task stealth 21 24 100.0 100.0 100.0 00.0 2.0
task stealth 21 25 100.0 100.0 100.0 00.0 0.0
task attack 21 1 111111

Figure 5-4: Example of swamp task class definition

Task class 21, the "swamp", was of type G (ground) and had 0 velocity. Using

the stealth command (discussed further in this chapter) the swamp task was assigned a

be-attack radius of 2 miles for ground units. This allowed us to spatially distribute the

61

tasks, creating an area of impassability without completely covering the display with

swamp icons. The assigned value for the penalty of contacting a swamp icon was 2.0 -

very small compared to other task values. The swamps had an attack radius of 0 miles -

the task could not be attacked by any platform. This effectively prevented the ground

units from "clearing" their way across the land area by destroying the swamps. (Which is

not an option in the real world).

In the real world swamps would be a known quantity to a ground force prior to

landing. To ensure that the swamps location was known to the DM's prior to the

amphibious landing, the detection and identification ranges for all platforms was set to

100 miles for the swamp task class. This resulted in all DM's, even if not directly

involved in the ground action, knowing the location of the swamp areas. Full knowledge

of the exact geographic features in a foreign country, by a landing force, is a bit

optimistic, but for this simulation the artificiality can be overlooked. The swamp's most

important function was to "channel" the landing forces into a specific route, guaranteeing

a minimum time to reach the objectives. The swamp coverage was sufficient and the

penalty severe enough that the ground units did in fact remain on the roads, a result of

which was that the pretimed mission events went well.

The combination of roads, cities, seaport, port and swamp icons located in the

land area made for a rather full, but not overly cluttered display. Once briefed in regards

to the land area representation, using the tutorial contained in Appendix B, the simulation

62

subjects acting as DMs had no trouble negotiating the represented geographic features.

An example of the land area display is contained in Figure 5-5.

Figure 5-5: Example of land area and geographic features

B. PLATFORMS

Numerous issues relating to platforms developed during the planning stage for the

phase one experiment. Most platforms were fairly easy to represent using the DDD -

assets such as fighters, tanks and ships had a "known" capability that did not change

63

much from platform to platform. Platform design followed a fairly set pattern. The

scenarios generally called for assets based on what is currently available to the CJTF in a

typical regional conflict. There were, however, several platforms that required additional

development.

1. Reconnaissance platform

In order to force ground elements to compete for non-organic assets we placed all

reconnaissance assets under the ownership of the CJTF. An SR71 reconnaissance asset

was the only asset capable of determining whether a silkworm missile site was a real site

or a decoy. Based on this information, gathered by the SR7 platform, a decision would

be made by the DM to attack or ignore the threat. The reconnaissance platform command

is shown in Figure 5-6.

platform 10: recon aircraft
platform general 10 A SR7 0.50 1

platform resource 10 0000000
platform range 10
25.00 20.00 15.00 0.00 0.01
50.00 50.00 45.00 0.00 0.01
50.00 50.00 45.00 0.00 0.01

platform accuracy 10
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Figure 5-6: Example of the SR7 Platform Class

64

To implement this identification ability the SR71 task class needed a unique

capability - the ability to measure the value of the "enemy" attribute, a10, contained in the

task attribute vector. The SR7 platform was given this ability using Has platform

accuracy command. The SR7 was given the ability to "see" the attribute - all other

platforms were unable to measure this value of the attribute vector, as their platform

accuracy on attribute a10 was set to -1, which prevented measurement ofthat attribute.

2. Platform reusability

The issue of whether a platform could be used more than once became important

when trying to set a time line for task accomplishment by the team. The ability to induce

competition within the team depended on the number of assets available at any given

time. Two mechanisms were used to control the assets available:

a. Endurance/returnability

The endurance of a (sub)platform is set in the platform general command.

This command specifies how long a subplatform exists once it has been launched. The

endurance specification is germane to the scenario generator only in the case of a

subplatform, but since the scenario generator allows any platform to be designated as a

subplatform the endurance must be defined for all platform classes. If the platform class

is not designated as a subplatform the endurance of the asset would be for the entire

scenario period by default. Some assets used as subplatforms, such as fighters and attack

65

aircraft, had a limited endurance period after which they would return to their point of

origin (i.e. carrier, base, etc.)

Whether the asset could be launched again was determined by the returnability

flag, also set in the platform general command. The intent here was to model cycle

times such as in aircraft operations, which in the real-world limits the air assets available

at any given time.

b. Reusable flag

The life span of "consumable assets", such as fire support rounds and

missiles, was too hard to predict with any accuracy, so the endurance value was not much

good - another method to limit use was needed. The reusable flag, also set in the

platform general command, provided for "single use" subplatforms to be made available.

If the subplatform was used to attack a task this flag determined whether or not the asset

would still be available after the attack was complete. The reusable flag was most useful

with the "consumable" assets, such as surface to air missiles or naval surface fire support

rounds. One "consumable" asset used in the scenario was Naval Surface Fire Support

(NSFS). This subplatform represented a "fire mission", vice a single round from a gun,

but the concept of reuse still applied. When requested from the supporting surface ship,

the fire mission subplatform was available for a limited time. Once used, the number of

NSFS missions available to the MEU decreased by one - limiting the number of missions

available to the DM, much like the real-world. An example of reusable flag use is shown

66

in 5-7. The reusable flag in the platform general command is set to zero, indicating the

platform was a single use "consumable" asset. This resulted in the 51 platform

disappearing along with the destroyed task. Amplification of the platform general

command can be found in Appendix A.

platform 12: ship based NGFS support rounds
platform general 12 A 51 0.00 0
0 0 60.00 3.000 10.000
platform resource 12 1150020
platform range 12
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

45.00 0.00 0.00 40.00 0.00
platform accuracy 12
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000

Figure 5-7: Example of the NSFS platform used as a subplatform

3. Subplatform ownership - location vs command hierarchy

Subplatform ownership became a critical issue during the implementation phase

of the scenario design. The scenario called for subplatforms to reside on a platform until

needed, then to be launched by the platform owner. The initial version of the DDD-III

automatically assigned ownership of the subplatform to the DM who owned the parent

platform. This made the abstraction of theater assets extremely difficult. There was no

way to represent subplatforms, owned by one DM, that resided on a platform owned by

another DM, such as theater assets stationed on the carrier. The command platform

subplatform was developed to allow full flexibility in regards to subplatform ownership.

67

This command specifies the number of subplatform classes that a specific platform class

could have, as well as which subplatform classes (by name), and how many were

contained on each platform. Additionally, and perhaps most importantly, the command

specifies the ownership of the subplatform following launch, allowing the designer to

place assets on platforms but retaining ownership with a second DM. The structure of

this command is shown in Figure 5-8.

Format: platform subplatform id num
subclass(l) sub_class(2)... sub_class(num)
n(l) n(2) ... n(num)
owner(l) owner(2) ... owner(num)

id: integer, giving the unique identification of the parent platform class.
num: integer, indicates the number of subplatform classes that this platform class has, max=7

NOTE: The maximum number of subplatforms that can be 'on-screen' at any one time is 100.

subclass(i): the name of the subplatform class. This name must be one of the class given in an
earlier platform general command.

NOTE: The platform and subplatform classes must be defined (via the platform general
command)

BEFORE the definition of their nesting structure.

n(i): the number of individual subplatforms of class 'sub_class(i)' on board this platform class.
owner(i): the number of the decisionmaker who will own the individual subplatforms of class

'sub_class(i)' when they are launched.

NOTE: If owner(i)= -1 these subplatforms will be owned by whomever "owns" the parent
platform

e.g. this gives the designer the ability to model self defense weapons.

NOTE: The default is no subplatforms present on platforms

Figure 5-8: Example of platform subplatform nesting structure

68

Example: platform subplatform 15 3
VF VA H60
3 2 1
4 0 0

Figure 5-9: Example of platform subplatform command use

In the example of platform subplatform shown in Figure 5-9, each parent platform

of platform class 15 (an aircraft carrier) will have three subplatform classes (children)

onboard. The three subplatform classes are VF(fighter aircraft), quantity 3, owned by

DM4 (the CVBG commander); VA (strike aircraft), quantity 2, owned by DM0 (the

CJTF commander); and H60 (helicopters), quantity 1, also owned by DM0.

C. TASKS

1. Specific task issues ("indirect" threats)

Most threats were relatively easy to model - they entered the tactical picture,

maneuvered through the region towards a target objective (most often a penetration zone)

and attacked, if not stopped by the team. To accurately model the real-world, however,

several classes of tasks were needed to represent the so-called indirect threats - contacts

that appeared in one area but were actually a threat to friendly forces in another area.

Examples of this type of threat are artillery and silkworm missiles.

69

a. Artillery

The scenario required enemy artillery units to appear within the general

vicinity of the ground forces and target friendly positions. If left unmolested the artillery

would eventually fire on the beachhead landing areas. An objective of the JTF

organization was to suppress the artillery positions prior to actual firing, protecting any

assets on the beaches. An example of the task class artillery is shown in Figure 5-10.

task 5: ground contact (artillery)
task general 5 G AT .99 0.211 2 artillery.icon
task mean 5 2.0 10.0 0.00 0.00 0.00 0.00 0.00 2.00 0.00 1.00
task view 5 2 2 2 2 2 2

0 100.0 100.0 100.0 100.0 00.0 task stealth
task stealth
task stealth
task stealth
task stealth
task stealth
task stealth
task stealth
task stealth
task stealth
task stealth
task stealth 5 11
task stealth 5 12

00.0
00.0
00.0
00.0
00.0
00.0
00.0
00.0
00.0

10 100.0
00.0
50.0

00.0
00.0
00.0
00.0
00.0

00.0
00.0
00.0
00.0
00.0

00.0 00.0
00.0 00.0

task stealth 5 13 00.0

00.0
00.0
50.0
00.0
50.0
00.0

00.0
00.0
50.0
00.0
50.0
00.0

5.0 00.0
5.0 00.0
8.0 00.0

00.0 00.0
00.0 00.0

6.0 00.0
5.0 00.0

00.0 00.0
00.0 00.0
00.0 00.0
00.0 00.0
50.0 00.0
00.0 00.0

task stealth 5 23 00.0 00.0 00.0 00.0 00.0
task stealth 5 24 50.0 50.0 50.0 5.0 00.0
task attack 5 1 111111

Figure 5-10: Examples of artillery task class

To allow for the ground units to see the artillery task a task stealth command was used to

modify the ground ranges for the MEU ground forces (Task class 24, the AAAV, is

70

modified with the Task stealth 5 24 line above). The ranges of the 51 platform and the

DDG offshore were also modified to allow for engagement (task stealth 5 10 and 5 12).

The team was constrained to the use of a single particular asset, Naval Fire

Support (NFS) to suppress the artillery threat. This was accomplished by exclusively

mapping the attribute vector of the artillery task class to the resource vector of the NFS

platform class (5In). The 51 platform is shown in example 5-11.

platform 12: ship based NGFS support rounds
platform general 12 A 51 0.00 0

0 0 60.00 3.000 10.000
platform resource 12 115 0 0 2 0
platform range 12
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

45.00 0.00 0.00 40.00 0.00
platform accuracy 12
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000

Figure 5-11: Example of 51 platform class

In order to provide enough time for engaging the artillery threat the maneuver

commands were spaced in time to present the threat throughout the game. Each artillery

task icon would appear and wait for 300 seconds before moving at a high velocity to "hit''

either the north or south beach. Artillery tasks were spaced in time to arrive every 400

seconds for the north beach, every 300 seconds for the south beach. The specific

maneuver commands for a series of eight artillery attacks on the north and south beaches

are shown in Figure 5-12.

71

Tasks 241-250 (artillery)
Artillery positions: site one:
site two:

maneuver definition 241 500.0
s 12.0 67.0 300.0
m 12.0 67.0 0.99
e 27.5 82.5 0.0

maneuver definition 242 900.0
s 12.0 67.0 300.0
m 12.0 67.0 0.99
e 27.5 82.5 0.0

maneuver definition 243 1300.0
s 12.0 67.0 300.0
m 12.0 67.0 0.99
e 27.5 82.5 0.0

maneuver definition 244 1700.0
s 12.0 67.0 300.0
m 12.0 67.0 0.99
e 27.5 82.5 0.0

(12.0 67.0-north)
(15.0 88.0-south)

maneuver definition
s 15.0 88.0 300.0
m 15.0 88.0 0.99
e 27.5 72.5 0.0

maneuver definition
s 15.0 88.0 300.0
m 15.0 88.0 0.99
e 27.5 72.5 0.0

maneuver definition
s 15.0 88.0 300.0
m 15.0 88.0 0.99
e 27.5 72.5 0.0

maneuver definition
s 15.0 88.0 300.0
m 15.0 88.0 0.99
e 27.5 72.5 0.0

246 600.0

247 930.0

248 1230.0

249 1530.0

Figure 5-12: Example of artillery task class maneuvering commands

b. Silkworm sites

The scenario had a need for a threat that would require C JTF

reconnaissance assets (or a national asset) to provide positive identification prior to

prosecution. A Silkworm missile threat was chosen to fill this requirement. The

description of the ground task class silkworm is shown in Figure 5-13.

72

task 7: ground contact (silkworm anti-ship missile battery)
task general 7 G SWG 0.99 0.211 1 silkworm.icon
task mean 7 15.0 20.0 0.00 0.00 0.00 0.00 0.00 5.00 0.00 1.00
task view 7222 222
task stealth 7 0 100.0 100.0 100.0 0.0 0.0
task stealth 7 1 0.0 0.0 0.0 5.0 0.0
task stealth 7 2 0.0 0.0 0.0 5.0 0.0
task stealth 7 3 0.0 0.0 0.0 8.0 0.0
task stealth 7 4 0.0 0.0 0.0 0.0 0.0
task stealth 7 5 0.0 0.0 0.0 0.0 0.0
task stealth 7 6 0.0 0.0 0.0 6.0 0.0
task stealth 7 7 0.0 0.0 0.0 5.0 0.0
task stealth 7 8 0.0 0.0 0.0 0.0 0.0
task stealth 7 9 0.0 0.0 0.0 0.0 0.0
task stealth 7 10 50.0 50.0 50.0 0.0 0.0
task stealth 7 11 0.0 0.0 0.0 0.0 0.0
task stealth 7 12 0.0 0.0 0.0 0.0 0.0
task stealth 7 13 0.0 0.0 0.0 0.0 0.0
task stealth 7 14 100.0 0.0 0.0 0.0 0.0

task stealth 7 25 100.0 0.0 0.0 0.0 0.0
task attack 7 1 111111

Figure 5-13: Example of silkworm task (ground) class command

The Silkworm threat acted much like the artillery threat, appearing in a fixed land

location, holding for a set period, then "flying" to the target (either the CVBG or the

ARG penetration zones) in order to score a hit. To do so the silkworm threat had to cross

the boundary between the land area and ocean area. If an air task had been used there

would have been no problem, but we desired that the Silkworm be viewed as a ground

threat (i.e. a silkworm launcher), so it needed to be a Ground task type. This Ground type

silkworm threat, however, could not travel outside the land boundary, so the spawned

Silkworm threat needed to be an Ah type task. Because of this land/sea boundary issue

two task classes were actually used - one (ground task class) for the initial ground

73

detection and one (air task class) that was spawned, or "launched", upon the

disappearance of the first. The spawning implementation is described in a later section.

A description of the air task class silkworm is shown in Figure 5-14.

task 22: Air contact (silkworm anti-ship missile battery)
task general 22 A SWA 0.99 0.211 2 silkworm.icon
task mean 22 15.0 20.0 0.00 0.00 0.00 0.00 0.00 5.00 0.00 1.00
task view 22222 222
task stealth 22 0 100.0 100.0 100.0 100.0 0.0
task stealth 22 1 0.0 0.0 0.0 0.0 0.0
task stealth 22 2 0.0 0.0 0.0 0.0 0.0
task stealth 22 3 0.0 0.0 0.0 0.0 0.0
task stealth 22 4 0.0 0.0 0.0 0.0 0.0
task stealth 22 5 0.0 0.0 0.0 0.0 0.0
task stealth 22 6 0.0 0.0 0.0 0.0 0.0
task stealth 22 7 0.0 0.0 0.0 0.0 0.0
task stealth 22 8 0.0 0.0 0.0 0.0 0.0
task stealth 22 9 0.0 0.0 0.0 0.0 0.0
task stealth 22 10 50.0 50.0 50.0 0.0 0.0
task stealth 22 11 0.0 0.0 0.0 0.0 0.0
task stealth 22 12 0.0 0.0 0.0 0.0 0.0
task stealth 22 13 0.0 0.0 0.0 0.0 0.0
task stealth 22 14 100.0 50.0 50.0 0.0 0.0

task stealth 22 25 100.0 50.0 50.0 0.0 0.0
task attack 22 1 1 1 1 1 1 1

Figure 5-14: Example of Silkworm task class (air) command

To facilitate the use of a national or CJTF asset to conduct positive identification

of the silkworm launch site a "positive ID attribute" was included in the attribute vector.

This attribute was only readable by the SR7 reconnaissance asset held by the CJTF. To

increase competition among units the "ground" Silkworm could only be engaged with VA

attack aircraft) owned by the CJTF. This was accomplished by again tailoring the

74

attributes of the task to the resources of the specific platform. Once "launched" the (air)

silkworm threat could not be engaged by any platform.

2. Spawning

When initially written the software had no provisions for a sequential game nor

one that allowed the simulation to "react" to various decisions of the team. It quickly

became apparent that there was a need for a "spawning" command that allowed the

designer to present the team with a task that when accomplished would produce another

task, such as taking of a hilltop then the holding of the same piece of ground.

The "launch" or spawn of the air task silkworm threat was accomplished using the

task spawn command. An example of the command format is shown in Figure 5-15.

Format: task spawn id num type sid(l) ... sid(5)
sid(6) ... sid(10)
sid(num-4)... sid(num)

id: integer id of spawner' task for which new tasks will be spawned.
#num: integer number of tasks to be spawned.
type: character A or D denoting a task Attack or task Disappear event.
sid(I): integer ids of'spawned' tasks.

NOTE: i) 0 < num < n, where n is specified via number of tasks command.
ii) a task can be both spawned and a spawner (ie, recursive), however, a task cannot be

spawned by more than one spawner.
iii) to prevent spawning cycles, ie, X spawns Y spawns X, we require id < sid(I), I = l..num.
iv) at most 5 spawned task ids specified per line, and, for num > 5, only last line can

have <= 5 task ids specified.

Figure 5-15: Example of Silkworm task class (air) command

For the silkworm transition from ground to air the spawn was keyed to the disappearance

of the ground task. If the ground task silkworm was not properly engaged within the wait

75

time then after a set period the air task would spawn, or "launch" and target the CVBG or

the ARG. This spawn command is shown in Figure 5-16.

task spawn 286 1 D 289

task 286 is ground task silkworm
task 289 is air task silkworm

Figure 5-16: Example of Silkworm task class (air) command

3. Stealth command usage

The platform range command provided the mechanism for assigning sensor

ranges, such as detection and identification. However, this command allowed for setting

platform sensor ranges only by class type - air, sea and ground. After designing portions

of the scenario it became apparent that the platform range command did not provide the

flexibility needed to abstract the more complex scenario requirements. Because of the

great number of assets and threats being uniquely represented, a method was needed to

allow specific task class to specific platform class range assignments. This was

implemented using the task stealth command. The stealth command resets the detection,

measurement, identification, attack and be-attack ranges for a specific task Class vis-a-vis

a specific platform class. (Overrides default values.) This allows the scenario designer to

tailor ranges down to an individual threat or mission, which can be used to create the

possibility of a late detection or non-detection of a unique threat. A description of the

command is contained in Figure 5-17.

76

Format: task stealth idl id2 [sensor(l) sensor(2) sensor(3) attack(l) attack(2)]
id 1: integer number, identifying the task class.
id2: integer number, identifying the platform class.
sensor(i): floating point numbers:

i=l: overrides sensor detection range r(j,l) of platforms of class id2 when
encountering tasks of class idl (that are of type j)

i=2: overrides sensor measurement range r(j,2) of platforms of class id2 when
encountering tasks of class idl (that are of type j)

i=3: overrides sensor identification range r(j,3) of platforms of class id2 when
encountering tasks of class idl (that are of type j)

Default: values r(j,i) as specified mplatform range command — EXCEPT if threatflg = 2 or 3, in
which case default values = r(j,5)

attack(i): floating point numbers:
i=l: overrides associated attack range r(j,4) of platforms of class id2 when

attacking tasks of class idl (that are of type j). Default: value = r(j,4),
EXCEPT if threat_flg = 2, in which case default value = 0.0

i=2: overrides associated be-attacked range r(j,5) of platforms of class id2 when
encountering tasks of class idl (that are of type j). Default: value = r(j,5)

for
all values of threat flag.

Figure 5-17: Example of task stealth command

a. Mines

One application of the task stealth command was in the modification of

the mine tasks, both sea and ground. The scenario OPORDER stated that mines were in

the area of battle, but did not specify the location or number. The stealth command was

used to set the detection range of several of the platforms to a fraction of their "normal"

ground ranges. The be-attack ranges were also significantly reduced. The mines would

appear on the display only after a platform crossed into the small detection range. In

some cases the DM had very little time to react to the threat. The speed of the platforms

and the small difference in ranges resulted in a requirement for an immediate response by

77

the DM controlling the affected platforms. An example of the command being used for

the ground mine threat is shown in Figure 5-18.

task general 8 GMN 0.01 0.211 2mines.icon
task mean 8 5.0 10.0 0.00 0.00 0.00 0.00 2.00 0.00 0.00 1.00
task view 8222222
task stealth 8 0 100.0 100.0 100.0 100.0 02.5
task stealth 8 1 0.0 0.0 0.0 0.0 0.0
task stealth 8 2 0.0 0.0 0.0 0.0 0.0
task stealth 8 3 0.0 0.0 0.0 0.0 0.0
task stealth 8 4 0.0 0.0 0.0 0.0 0.0
task stealth 8 5 0.0 0.0 0.0 0.0 0.0
task stealth 8 6 0.0 0.0 0.0 0.0 0.0
task stealth 8 7 0.0 0.0 0.0 0.0 0.0
task stealth 8 8 0.0 0.0 0.0 0.0 0.0
task stealth 8 9 00.0 00.0 00.0 8.0 02.0
task stealth 8 10 0.0 0.0 0.0 0.0 0.0

task stealth 8 23 0.0 0.0 0.0 0.0 0.0
task stealth 8 24 4.0 4.0 4.0 0.0 01.0
task attack 8 1 111111

Figure 5-18: Example of task stealth command used in the mine task class

In this example platform 9 and 24 are assigned new ranges for task 8, the

ground mine. These ranges will override the ranges set in platform range. The detection

of the mine threat by platform 24, the ground units of MEU2, will occur at four miles,

with the be-attack or "lethal" range of the mine set to one mile. All other platforms used

in the scenario were assigned ranges of 0 to ensure that the mines would not be detected

inadvertently by another asset, such as an aircraft passing over the area.

78

D. SPEED AND MOVEMENT

The playing area, a 100 by 100 mile square grid, was chosen for a number of

reasons, not the least of which was the usability of the display. If the game area were to

be expanded much beyond 100 miles the DMs would be forced to "zoom in" much more

frequently. It was decided that for the phase one experiment, display confusion (or a lack

of user friendliness) should be avoided whenever possible. For this experimental reason

the size of the display was chosen simply based on what looked the best - and allowed

each DM to see the entire battle space without excessive command requirements.

To place a land mass, ocean area, full carrier battle group and an amphibious

readiness group in such a small area did pose some interesting problems. Realistically,

no carrier battle group is going to be within 20 miles of a hostile coast, at least not until

air superiority is achieved. This simulation required some constructive time/distance

"changes" to make the assets behave more like the real world. In other words, the

movable elements of the scenario, both assets and threats, moved the same as in the real

world - in relation to each other.

It was necessary on occasion to adjust the speed of the targets and assets to allow

the various missions to be accomplished within the 40 minute simulation window - in

some cases the scenario speeds of some units was triple the "real world" speed. There did

not appear to be any real problems with this modification in terms of scenario

believability. An example of the need to change speeds was the observance (in trial runs)

that in one of the scenarios the southern MEU was always arriving at the objective first,

79

which avoided the competition that we were trying to induce. By slowing the southern

MEU's speed down by just 5% we were able to ensure that both MEU's reached their

objectives at roughly the same time.

E. EXPERIMENTAL CONTROL

After the first round of training runs with the actual teams the length of the

scenarios was fixed at 40 minutes. Several times during the training runs the teams

would "finish" i.e. reach the objective/goal, prior to the end of the game clock. For the

purposes of data taking and to support the controlled conditions of the laboratory

environment the teams were required to remain at the consoles and perform any game

elements until the clock reached 40 minutes. The simulation lacked a sense of realism

when this situation occurred. A mechanism was needed to terminate the game following

the completion of the mission objectives. This mechanism was implemented using the

endgame command. The end game command, shown in Figure 5-19, allowed the

designed to specify the final mission task as a trigger for the termination of the game.

Format: game end id time
id: game will gracefully end after the task number id has been

attacked.
time: float delay time to wait before ending the game.

Default: id=399, time=5.0.

Example: game end 390 5.00

Figure 5-19: Example of end game command

80

VI. DDD-III EXPERIMENT PHASE I - FUTURE ISSUES

Many challenges were encountered in modeling the Joint environment utilizing

the DDD-III during the planning and development of the experiment. Many of these

challenges were solved prior to the experiment, in an evolutionary manner, whereby

various abstractions were developed, tested and installed in the scenario. No "show

stoppers" were encountered, although several minor elements of the scenario, such as the

number of NSFS ships available, were modified to be more easily represented by the

DDD. These small modifications of the scenario, however, were transparent to the

decisionmaking teams. As such the basic premise of the experiment and the general

hypothesis were unaffected by these changes.

While implementing the current scenario, additional ideas for abstracting

elements within the DDD-III were considered for future implementation. Some of these

concepts have been developed - others are still in the "idea" stage. The major concepts

for future development are discussed below. (A discussion of lessons learned from the

phase one experiment is also contained in additional documents [Ref 8].)

A. INFORMATION STRUCTURE

1. Information net design

The information structure currently available in the DDD-III is of a single "net"

design. Data is available to all decisionmakers as long as the individual platform sensor

81

is capable of reading the data. The scenario designer has a limited ability to tailor the

information received by the individual DMs. Some degradation of the data is possible via

the various "noise" inducing commands, but again, this data must be readable by the

platform sensor. The Joint information structure in the real-world, however, is composed

of a multitude of information nets, separated by function, geography and mission need.

A true abstraction of the Joint environment would give the designer the ability to

provide different nets to different DMs. A representation of a general information net

structure concept is shown in Figure 6-1.

To implement this concept and accomplish the functions required for a net

structure the task view command will be replaced with three new commands:

• Number_of nets nets

• platform nets

• access nets

Platform classes NETS DMs

rmn r> m Q r^TF

RECCE _ /^ ̂ [rTI

(DM0)

AIR ^\

SAT. O^"
X.

 V j^J JFACC
^- >. (DM1)

X) CATF
(DM2)

Figure 6-1: sample net structure

82

The first command, number of nets nets will specify the number of information nets that

exist in the scenario. The designer will then customize the connections between the

platforms and the nets in order to determine the type of information available from

sensors on a particular platform class. This connection can be representative of a low

bandwidth device, in which case the sensor may report only detection, or a highband

device, in which case the sensor may provide measurements of attributes.

Finally, the designer will specify the connection between the nets and the DMs,

determining what information will be presented to the DMS. The connection will specify

the type of information desired: Air, Sea, Ground, any combination of the three.

This method of implementation will allow for greatly increased flexibility in the

information structure and more closely model the real-world. This net structure concept

can be built upon to further enhance the information distribution throughout the scenario.

However, there are many procedural concepts, such as: (1) the use of filters in the

connecting lines, (2) who controls the assignment of nets and (3) who can join a net, that

require further exploration.

2. Information growth

In the current version of the DDD, information presented to the DMs, in the form

of sensor measurements from platforms, changes only with distance, (i.e. the accuracy of

the sensor can be set to be range dependent) This creates a more accurate representation

of sensors available in the real-world. However, there is more that could be included

83

with respect to the manipulation of data change. Information in the real-world does not

remain stagnant but changes with time as the conditions of the environment and of battle

change.

One element is that of a dynamic information environment. As the scenario

progresses, information on a particular task can change to represent an increased threat or

a capability that may not have been initially detected.

3. Communications

a. Internal message traffic

The current version of DDD-III allows for message traffic among the

DMs, although messages are limited to menu selected and pre-scripted options. During

the course of the experiment, it became apparent that the menu selected messages were

not sufficient for a high-level decisionmaking simulation. The limited number of

messages constrained the flow of command and control information among the DMs,

resulting in player frustration.

This change is in the design phase. Whatever the method of implementation,

there will be significant requirements on the recording of message traffic for the purposes

of data analysis. The improved message system must at a minimum provide to the DDD

log files the text of the message, the time sent, sender, receiver and any DMs that where

included in the message distribution.

84

b. External message traffic

An external message is informational text, originating outside the DDD

software, which must be delivered to any or all DMs. An outside message is

normally an intelligence report but can be anything since no restrictions are

placed on its content. During the scenario runs the outside messages were in the form of

paper copies handed to the DMs by experiment monitors. This was a rather cumbersome

process, requiring coordination with the scenario time line, as well as the administration

of all the various messages to be presented to four teams on four scenario runs.

Future DDD-III scenarios will present "outside" messages via the message display

system contained in the software. The scenario designer will specify message delivery

based on time or event, and will be able to specify the desired distribution.

B. COMMAND STRUCTURE

1. Level of decision making

The tasks presented to the DMs were all handled in the same manner for this

experiment. Each DM followed similar procedures to accomplish a presented task. In

the real-world, however, mission objectives vary based on the relative level of the DM

involved, as well as how the objective is actually processed. For example: the objective

of taking the beach represents a single mission to the CJTF. For the component

commander (GCC), however, this objective involves many smaller objectives, such as

picking the beachhead, placing troops into position, assigning covering air, etc.. The

same broad task may appear to be very different to different levels of the same decision

85

team. This difference requires that separate parts of the team perform tasks that may be

viewed as fundamentally different.

One method of integrating this difference into the simulation may be to create a

set of tasks that present a series of "subtasks" to be accomplished by DMs of varying

decision levels. Unlike the prerequisite command, this set of "subtasks" would reside on

a single task, be presented together, and not necessarily require that the "subtasks" be

accomplished in any given order.

C. ENVIRONMENT

1. Geography

The DDD-III currently uses "tasks" to represent various geographic obstacles,

such as swamps, hills and towns. Additional environmental commands added to the

general commands section would simplify scenario design, such as preformated swamps,

hills, roads, etc. These environmental commands would be used to increase the richness

of the visual display. To represent an objective to be taken by the DMs the definition and

representation of a task class would still be required.

D. PLATFORMS

1. Ownership

During the scenario, ownership of subplatforms developed into a significant issue.

The partial resolution was development of Hit platform subplatform command structure

86

which, among other elements, specified the ownership of a subplatform following its

"launch", (see chapter V)

There are situations in the real-world in which two identical assets, positioned on

the same parent platform, are owned by different Decisionmakers. An example of this for

our scenario was NSFS - both MEU's needed to simultaneously "own" fire missions of

the same subplatform class (5in) on the same ship (DDG). With this situation the

challenge for the designer was to work around the DDD-III, which would not allow

identical subplatforms to reside on the same platform with different owners. This

limitation was averted by the addition of another DDG to carry the second MEUs NSFS

missions.

The platform subplatform command will be modified to remove this limitation.

This will reduce the number of platforms required in the scenario and more accurately

represent the real-world environment.

2. Attrition

This scenario was designed so that assets needed for mission accomplishment

could not be destroyed, either by team error or by random chance. Attrition was

represented by the loss of team strength - a score maintained for a final measure of

success of the team performance. It is generally undesirable, from an experimental point

of view, for available team assets to be a function of the team's path through the scenario.

Some attrition, however, would definitely be a positive step towards real-world combat

87

situations. The method of implementation and the resulting effect on the experimental

conditions must be further researched.

3. Loss of resources (damages) to an asset

Closely related to attrition is the concept of mission capable platforms. One

mechanism to abate the attrition problem would be to allow damage to be sustained by

platforms. The amount of damage could be limited to a final mission-representative

figure, or "bottom line". The implementation of this concept could result in the need for

more assets for a given task to be accomplished.

4. Auto-stop (intelligence)

The current version of DDD does not contain any mechanism for a platform to

"react" to a threat. The stealth command, used frequently in this scenario, resulted in

several tasks "popping" up within a very short range of the platform. The platform,

unaware of the task in its path, would of course continue on the course of action last

ordered by the DM in control. In the real-world, however, upon detection of a threat or

anomaly, an asset would stop and reassess the situation to determine whether new action

is needed, before proceeding.

To implement this "intelligent" response to a "pop-up" threat, the software will be

modified to stop a platform upon detection of a task in its path, and possibly to engage the

task. The specific issues of the option have yet to be determined, but there will be a

tailored set of task parameters to trigger this "autostop" concept.

88

E. TASKS

1. Arrival based on location vs time

Currently, all tasks are time dependent - the scenario designer scripts the sequence

of tasks and then uses a time line to designate arrival times. The task spawn command is

one attempt to replace the time dependency with situational dependency, but this is only

the first step. In the scenario, designers were concerned about maintaining the

advancement of forces at relatively the same pace, ensuring that hoped for competition

events would occur. The ability to have tasks sensitive to "trip wires" would have been a

great advantage in controlling the advance. For example - tanks that appeared on the road

were carefully timed and placed so as to "appear" to both ground forces simultaneously.

However, in some scenario runs the beach landings did not go according to the schedule,

and tanks appeared on the road long before the forces were actually in a position to be

engaged by them.

2. Dynamic tasks (attributes, etc., as a function of time)

It would have been interesting if the attributes of the enemy ground units changed

as the scenario progressed. Thus, depending on when the task is actually engaged by the

DMs assets, the complexity, resources, information and coordination elements may be

significantly altered. For example, in this scenario, enemy tanks required only one

section of aircraft to engage and destroy them. Future design considerations include

consideration of changing task attributes. What if, however, the attributes of the tanks

changed with time, i.e. in a period of time the tanks are "reenforced" with additional

89

forces? They then would require addition assets to destroy them. For example two

sections of combat aircraft, further complicating the resource allocation issues faced by

the DMs.

3. Parallel attacks by several DM's (done)

Currently, a form of parallel attacking is possible - during the scenario there were

several tasks that required more than one platform's assets to effectively engage and

destroy them. This method of attacking was very constrained in the sense that the amount

of resources required to attack was known and the platforms engaged simultaneously.

Balancing the desired realism with the practical elements necessary to force asset

competition virtually forced a unique task to asset association [Ref 6]. This association

is, of course, present in the real-world but in a much more flexible manner. For instance,

a more generic requirement to engage aircraft with an anti-air weapon, vice having the

specific weapon designated ahead of time.

One method proposed to circumvent the unrealistic asset-task assignment is to

allow for simultaneous attacks by platforms. The DMs would be aware of the minimum

required resources but have the flexibility to achieve these resources by combining the

platforms in any desired manner.

4. Unknown resources needed for engagement

In the current DDD-III the resources required to properly engage a task are

reported to the DMs provided there is a platform sensor within range of the task able to

90

measure the attributes. The ability to consistently view the match-up prior to an

engagement is something that does not exist in the real-world.

A more realistic representation would be for the attacking platform to have little

or no idea as to the resources required. For instance the DM is required to engage the

threat but does not know if he will be successful. Once the platform engages the task the

attribute to resources match-up would be displayed. The DM might then have to call

upon other platforms, either organic or non-organic, to provide the necessary resources to

make up the difference and complete the attack. This concept would be effectively

supported by a new parallel attack command.

5. Tasks reduced in ability following an attack

In the current DDD-III all tasks, if engaged properly with platforms holding the

required minimum resources, are destroyed. The capability to reduce or degrade task

effectiveness verses actually destroying the task (i.e. a mission kill) would allow the

simulation to more accurately model the real-world. Many times ROE requires that a

reasonable and appropriate response be used by the subordinate commanders in the

execution of their mission.

6. Tasks warned off vice destroyed

No mechanism currently exists to warn off a task vice engaging and destroying it.

The realities of the real-world are seldom this final - there are rules of engagement to

follow, plus international law and convention to abide by. In many combat areas, aircraft

91

and surface vessels are routinely warned off by the forces in the region, presenting the

opportunity for the unknown contact to leave the area before being engaged.

F. SPEED AND MOVEMENT

1. Variable task speed

Much of the movement of both task and platforms is linear. Simple grid locations

are presented by the designer to the scenario generator, which translates these XY

coordinates into motion vectors for the tasks. No mechanism exists to allow variation or

to simulate a responsive target - the task speed is currently set to a time line. If the ability

existed to speed the task up when a platform came into close proximity, the threat would

be more representative of a dynamic real-world threat.

92

VII. SUMMARY

A. PROJECT CONCEPT

A revolution in Command and control (C2) capability, brought about by new

communications technology and advanced computer capabilities, has created the "Global

Awareness" concept. How Decisionmakers (DMs) adapt their organization to coordinate

information, resources and activities to fulfill their mission, within the realm of Global

Awareness, is the subject of current research efforts.

The Office of Naval Research has commissioned a research effort into this far

reaching topic - the Adaptive Architectures for Command and Control (A2C2) project.

The project required a mechanism to abstract "real world" problems into a controlled

laboratory environment where a variety of experimental conditions could be manipulated.

A new program was needed to support this model-based empirical research. The

result was the development of the Distributed Dynamic Decisionmaking (DDD-III)

paradigm.

B. DISTRIBUTIVE DYNAMIC DECISIONMAKING (DDD-III)

1. Requirements

A user friendly, easily modified, "low level" command and control simulator, the

DDD-III paradigm models the Joint real-world environment. A wide range of commands

and data strings are available to abstract the complex components and variables

93

associated with a Joint battle space. The DDD-III was developed to fulfilling the

following needs:

Create a "realistic" Joint environment within a computer simulation,

abstracting the various elements of Army, Navy, Air Force and Marine

warfare, found in the Joint Task Force environment, to an understandable

computer representation.

Provide for the easy manipulation of key structural variables to allow

testing of basic hypotheses dealing with structural change.

Avoid the need to build/require a technical domain expertise in test

subjects, thereby allowing the experiment to be conducted on-site at NPS

using available officers.

Create a simulator that would allow for ease of scenario design/change,

data collection and data retrieval DDD-III provides a multi-player,

real-time, model-based simulation environment.

2. Environment

The DDD-III has the ability to explicitly operationalize many of the relevant

organizational dimensions within a Joint task force (JTF). There are three essential

factors which make the DDD-III ideal for the tier-I experiments:

• Joint warfare framework

94

• Mission structure - represented as tasks, linked together by time, space

and/or precedence to provide a theater level mission for the organization to

accomplish.

• Force competition - used to "force" coordination between the DMS in

setting priorities, allocating limited organic and non-organic resources as

to achieve the overall mission objective.

3. Core elements

The DDD-III software gives the user the ability to modify dimensions of task,

platform and organizational structure in order to test a specific hypothesis. These

dimensions are the core elements of the paradigm. The dimensions are manipulated to

study their interactions and to elicit possibly changes in organizational structure and

response from a team.

C. PHASE ONE EXPERIMENT

1. Hypothesis

The phase one hypothesis can be summarized effectively as follows: "An

organization with a common functional commander is better for certain tasks than an

organization without one."

95

2. Goal

The phase one experimental goals were twofold:

• To test the interaction between task structure, organization structure, and

components in a joint environment given a common operational picture

across all levels of hierarchy.

To validate the DDD-III paradigm and the procedures of abstraction used

by the scenario designer to develop the scenario specifics.

3. Scenario

The scenario chosen was representation of a "typical" future requirement for US

forces, a Joint forces mission to capture a port and airfield which will allow for the

introduction of follow-on forces. The assets available to the DMs represented force

structure already in use in the real-world Joint environment.

4. DDD Development

One significant challenge was to model elements of the real-world into the DDD-

III without extensive software modifications or complex commands, consuming the

scenario designers time and distracting from the goal of the simulation.

a. Phase one issues

Many unique applications of the generic DDD-III commands were

developed in order to represent the Joint world as accurately as possible. The challenge

96

was to abstract elements of the real-world that did not fit the generic mold of a direct

threat, such as geography and stand-off weapons. Major implementation and abstraction

were discussed.

b. Future issues

While implementing the current scenario requirements, additional ideas

for abstracting elements in the DDD-III were considered for future use. Some of these

concepts have been developed while others are in the "idea" stage. The major concepts

were reviewed and the possible changes to the DDD discussed.

D. FUTURE EXPERIMENTS - PHASE TWO

Although analysis of this experiment is not yet completed, initial indications are

that the DDD-III provides the needed abilities for the modeling of the Joint warfare

environment into a tier-I level experiment. The results of this experiment, coupled with

modeling theory being developed separately, will form the basis for phase two. It is

anticipated that these experiments will involve changing of organization structure, in

response to changing task structure, during the simulation run. This phase is expected to

be performed in late 1996.

E. CONCLUSIONS

The underlying DDD-III paradigm was found to be valid for tier-I experimentation

- the DDD-III allows the scenario designer to easily manipulate and control the many

97

experimental dimensions. Additionally, the experiment fulfilled its two general purposes:

• To test the interaction between task structure, organization structure, and

components in a joint environment given a common operational picture

across all levels of hierarchy.

• To validate the DDD-III paradigm and the procedures of abstraction used

by the scenario designer to develop the scenario specifics.

Finally, this experiment provided much needed data and lessons learned to support the

next experimental phase.

98

6/20/96 Scenario Generator Users Manual

APPENDIX A. [DDD Scenario Generator Users Manual]

1. INTRODUCTION

2. GENERAL ITEMS

3. CLASS INFORMATION

3.1 PLATFORM CLASS INFORMATION

3.2 TASK CLASS INFORMATION

4. STATE INFORMATION

5. MANEUVER INFORMATION

6. SETTING UP AN EXPERIMENTAL SPECIFICATION FILE

7. EXAMPLE FILES

99

6/20/96 Scenario Generator Users Manual

1. INTRODUCTION

The 3rd-generation Distributed Dynamic Decisionmaking (DDD-III) paradigm was
designed to meet the needs for empirical research in adaptive architectures for Joint
Command and Control (C2). The DDD-III is implemented as a multi-player, real-time
simulation that provides a team of decisionmakers with an air, sea and ground
environment, a variety of task classes, and controllable platforms with subplatforms,
sensors and weapons (resources). This flexible research paradigm provides the ability to
conduct controlled experiments in a laboratory environment, using problems that are
abstractions of the "real world".

The design of the DDD-III focuses on the dynamic/execution phase of the mission
and allows for manipulation of key structural variables in task and organizational
dimensions. The DDD-III has the ability to constrain and/or to manipulate
organizational structures such as authority, information, communication, resource
ownership, task assignment, etc.

The scenario generator is the tool through which the scenario designer translates the
mission requirements found in the "real-world" Joint military environment into DDD-
specific constraints, defining the Joint warfare "game" world. The scenario generator
assists the experimenter in preparing the many options and variables used to create the
game. There are four major categories of variables available to the game planner to create
the desired simulation:

1) General information - including time, number of players, shape of land, etc.
2) Platform and Task class information - defining both friendly and "hostile"
forces.
3) State Information - defining attributes, resources and game element sequencing.
4) Maneuvering information - defining the actual movements of the tasks.

2. GENERAL ITEMS

The commands in this section define the structure and overall generic features of the
scenario. These commands allow the scenario designer to create a "framework" within
which the Joint environment can be abstracted. The chain of command, number of
decisionmakers, game duration and other structural elements are enumerated, as well as
land, roads, boundaries and other geographic features. Additional features can be added by
tailoring task commands (found in section three) to represent fixed areas to be avoided by
the simulation players. The default values of each parameter when applicable are listed
within the command description.

Decision Structure

This command defines the number of decisionmakers present in the simulation. In

100

6/20/96 Scenario Generator Users Manual

addition it identifies the command structure they are contained within, (in reference to the
other decisionmakers) This allows the scenario designer to specify command structure,
which affects authority/responsibility and asset control issues among decisionmakers.
Only acyclic structures are supported in DDD-III.

Format: decision structure ndm
name(0) name(l)... name(ndm-l)
cd(0) cd(l)... cd(ndm-l)

ndm : number of decisionmakers in the game. default=4
name(I): alphanumeric string (up to 5 chars) for DMi's name. default='DMi'
cd(I) : the dm to whom DM#I reports (DMI's boss). default=0

constraint: cd(I) < I, to assure that a decisionmaker will only have one "boss" (Acyclic
structure)

Example: decision structure 6
CJTF GCC MEU1 MEU2 CVBG ARG
0 0 1 10 0

Explanation: There are six decisionmakers defined. DM1 is assigned the name CJTF,
DM2 is assigned the name GCC, etc. The command structure in this example is a three
tiered hierarchy consisting of the CJTF as overall commander, with GCC, CVBG and ARG
reporting to the CJTF. The two MEU's are reporting to GCC.

Simulation Time
This command sets the scenario duration in seconds, thereby allowing the experiment
designer to determine the maximum game time for each scenario run. The endgame
command can be used to stop the simulation if the decisionmaking team has fulfilled their
objectives prior to reaching this preset simulation time.

Format: simulation time ts
ts : floating number. Maximum time allowed in the game. default=600.0

Example: simulation time 2400.0

Explanation: The game will last a total of 2400 seconds (40 minutes)

Number of Tasks
This command sets the total number of tasks allowed during the simulation. A task is
used by the scenario designer to represent enemy threats, mission objectives, fixed land
objectives, etc. Each task must be further defined in the state and maneuver sections - if

101

6/20/96 Scenario Generator Users Manual

not the scenario generator will automatically, randomly, create tasks to reach this preset
number. (Which can significantly impact the scenario sequence)

Format: numberof tasks n
n: integer number of tasks in the game, max=200, default=50

Example: number_of tasks 140

Explanation: A maximum of 140 individual tasks exist in this simulation. (Not all tasks
may necessarily "arrive". This depends on their arrival times and the simulation time)

Simulation Scale
This command defines the "size" of the playing area. The value specified will represent
the length of each side of the display area in miles. (The units in the simulation can be
miles, Km, ft, etc, - as long as consistency is maintained throughout the scenario file
specification) The display area will be overlaid by a ten by ten square grid to provide map
coordinates.

Format: simulation scale s
s : floating number. default=1.0

Example: simulation scale 100.0

Explanation: The playing area will be a 100 by 100 square mile grid area. (The XY grid
used in the display is as follows: X coordinate begins from 0 on the left side of the screen
and goes to 100 on the right. The Y coordinate begins from 0 on the top of the screen and
goes to 100 on the bottom.)

Number of Attributes
This command sets the total number of attributes used to define the characteristics of the
tasks. Each task attribute in the vector is assigned a unique name. The attribute value
position in the vector is critical - later inputs or references to the attribute vector rely on the
order of the numerical values to set the attribute characteristics, (ie: all attributes must be
defined each time when referencing the attribute vector) The first two attributes in the
vector are fixed in definition: attribute one = Value, is the value that the task is worth to the
decisionmaker when properly accomplished. (It also represents the amount lost if not
successfully attacked.) Attribute two = Time, is the duration assigned to the engagement
when the task is prosecuted (actually attacked) by a platform.

Format: numberof attributes natt
name(l) name(2)... name(natt)

102

6/20/96 Scenario Generator Users Manual

natt : integer number up to 20. Default=3
name(I): string of up to 5 chars for attribute's name. Default='Attri'

Example: numberofattributes 10
Value Time Air Sea Groun hold Mine tank Med enemy

Explanation: A total often attributes are defined for the attribute vector. Each attribute is
assigned a name: Value, Time, Air, Sea, etc, whose position in the vector is unique..

Number of Resources
This command sets the total number of resource categories that will be used to define the
characteristics of the platforms. A platform is used by the scenario designer to represent
friendly assets, such as aircraft, ships, ground units and fixed bases. Each platform will
have a vector of resources where each element in the vector is assigned a unique name.
The position of the resource value in the vector is critical - later inputs or references to the
platform resource vector uses the order of the numerical values to set the resource
characteristics, (i.e.: all resources must be defined when referencing the resource vector)

Format: number_of resources nres
name(l) name(2)... name(nres)

nres : integer number up to 20. default=3
name(I): string of up to 5 chars for resource's name. Default='Resi'

Example: number_of resources 7
air sea ground hold mine tank Med

Explanation: a total of seven resource categories are defined in the resources vector. Each
resource is assigned a name; air, sea, ground, etc., whose position in the vector is unique.

Renewal Interval
This command allows the user to preset a screen renewal interval in order to avoid
processor overload, caused by the computers' attempt to continuously update all platform
and task positions to all screen displays.

Format: renew interval t
t: floating number of seconds between clock and screen updates. Default=1.0

Example: renew interval 0.5

Explanation: The screens will be updated every half second, which will be sufficient in a
basic simulation of six players - however, a more involved game that has a greater number

103

6/20/96 Scenario Generator Users Manual

of players may require a longer refresh cycle, such as 2 seconds, depending on the CPU.

Random Seed
This command sets the random seed used in the simulation run. The random seed is
applied to produce a sequence of pseudo random numbers that are used to generate task
and platform information. For the same xsnnnn.dat file, different random seeds will
produce different information elements on the tasks and platforms. This function can be
used by the scenario designer to provide a randomness for the values of the attributes.
(This randomness can be useful in defining the attributes of the neutral tasks to provide
some diversity between scenario runs)

Format: random seed r
r : positive integer number. Default=5

Example: random seed 1

Explanation: Provides a random seed value of 1 to the random noise generator

Message Number
This command sets the number of information channels each decisionmaker owns. A
channel can hold only one message at a time. If all channels owned by a decisionmaker are
filled with messages the decisionmaker cannot send out any messages until a channel is
cleared.

Format: message number n
n : positive integer number of communication channels available. Default=4

Example: message number 4

Example: Assigns a total of four message channels to each decisionmaker.

Communications F.porh

This command sets the time a communications channel is held for transferring a message.
Unlike communications delay, Which sets the time delay for a message to reach its
destination after being sent from the decisionmaker, communications epoch concerns the
time the communications equipment itself is tied up during message transmission. This
function can be used by the scenario designer to simulate the internal delays associated
with routing a message to be released through your own command hierarchy.

Format: comm epoch t
t: floating number of seconds a comm. channel is busy after sending a msg,

104

6/20/96 Scenario Generator Users Manual

Default=6.0

Example: comm epoch 6.0

Explanation: Any communications channel used by the decisionmaker will be tied up for a
period of six seconds following transmission.

Communications Delay
This command sets the time it takes for a communication message to reach its destination
after initiation from the source decisionmaker. This command allows the scenario designer
to account for the delays associated with message transmission in a global perspective
(satellite delays, system busy signals, etc)

Format: comm delay t
t: floating number of seconds it takes for a message to be received. Default=15.0

Example: comm delay 5.0

Explanation: Messages will be "delayed" for a period of five seconds before being
displayed on the receiving decisionmakers terminal.

Request Delay
This command sets the time it takes for a resource request message to reach its destination.
Functions similarly to the communications delay. This command can be used by the
scenario designer to simulate the delay encountered when a request for assistance is sent to
another command. A zero delay would mean instantaneous response.

Format: request delay t
t: floating number of seconds it takes for a request to be received. Default=15.0

Example: request delay 5.0

Explanation: All resource request messages will be delayed a total of five seconds before
being displayed on the destination terminal.

Transfer Delay
This command sets the time it takes for a transferred platform to reach its new owner after
the initiator has completed the transfer command. This command can be used to simulate
the time required for the chain of command to assign that unit to the new task force.

105

6/20/96 Scenario Generator Users Manual

Format: transfer delay t
t: floating number of seconds it takes for a transfer to be received. Default=20.0

Example: transfer delay 10.0

Explanation: Platform transfers will be "delayed" a total often seconds before being
available to the receiving decisionmaker.

Attack Delay
This command sets the default time it takes for a task to be destroyed once an attack has
been initiated. Both the attacking platform (s) and the task are frozen for this period. This
allows the scenario designer to simulate the use of assets in a real-world engagement,
where engagements "remove" the asset from the order of battle for a period of time.

Format: attack delay t
t: floating number of seconds an attack requires.

NOTE: Since the 2nd attribute is the attack delay, this command sets the default for the
2nd attribute. Default=15.0

Example: attack delay 15.0

Explanation: The default attack delay (freeze time) for any attack is set to fifteen seconds.

Scramble Identification Number
This command sets the task identification number scramble flag. Task numbers are
specified in the maneuver section and are displayed as part of the task identification to the
display screens. When set, this flag renumbers the display identifications. This command
allows for the identification numbers of the contacts to change with each run ofthat
specific scenario, which prevents the team from anticipating tasks based on their
identification number.

Format: scramble id d
d : integer number. Default=0
:0 - do not scramble the task id
: 1 — scramble the task id

Example: scramble id 0

106

6/20/96 Scenario Generator Users Manual

Explanation: Task numbers are not scrambled and are as specified in the maneuver section.

Communications Permission
This command sets the communications structure for the decisionmakers within the
simulation. If a communications link exists from decisionmaker i to j, DMi can
request/send resources, information and action/intention messages to Dmj. This command
is one way in which the scenario designer can augment the chain of command in the
simulation, forcing DM's to follow preset communications routes.

Format: communication permission
P(0,0) P(0,1) ... P(0,ndm-1)
P(1,0) P(l,l) ... P(l,ndm-1)
P(ndm-1,0) P(ndm-l,l)... P(ndm-1, ndm-1)

P(i j) = 1, DMi can communicate with DMj. (i.e. link exists from I to j)
=0, DMi can't communicate with DMj.
Default: all diagonal elements are 0, the rest are 1

Example: communication permission
0 1 1 1 1 1
1 0 1 1 1 1
0 1 0 1 1 1
0 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 0

Explanation: The matrix defines the communications links between DM's. All
decisionmakers can communicate with each other except for DM2 and DM3, who cannot
communicate with DM0, and are therefore forced to pass all requests for assets and
messages to DM0 through an alternate routing. In our specific example DM2 and DM3
represented MEU's, who were expected to communicate through the GCC to the CJTF.
(See decision structure)

Land Area
This command sets the portion of the game area defined as land. Sea tasks/platforms
cannot cross on to the land area, and ground tasks/platforms cannot cross into the sea area.

Format: land area xl yl x2 y2
xl : Upper-left X-coordinate
yl : Upper-left Y-coordinate
x2 : Lower-right X-coordinate

107

6/20/96 Scenario Generator Users Manual

y2 : Lower-right Y-coordinate
Default=no land.

Constraints: 0< xi < s; 0< yi < s (s = simulation scale)

Example: land area 0.00 40.00 30.00 100.00

Explanation: The defined land area will be a rectangle 30 units wide and 60 units long,
beginning in the lower left corner and extending upward into the game area display.

Draw Line

This command allows the user to draw lines of varying thickness and length. These lines
can be used to mark areas, define roads and add geographic relief to the game area display.
Multiple draw line commands can be issued.

Format: draw line xl yl x2 y2 [width]
xl : Upper-left X-coordinate
yl : Upper-left Y-coordinate
x2 : Lower-right X-coordinate
y2 : Lower-right Y-coordinate
width : (optional) Line width, in pixels. Default: 1
Default=no lines drawn.

Example: draw line 5.00 95.00 5.00 75.00 2

Explanation: This will draw a line, two pixels wide, from xy grid (5,95) (upper left corner)
to xy grid location (5,75). This line will appear as a straight vertical line 20 units long.

Draw Rectangle

This command allows the user to draw rectangles of arbitrary sizes in the game display
area. This command can be used much like the draw line command to demark geographic
areas, such as towns, etc., as needed in the playing area.

Format: draw rectangle x y w h [width]
x : Upper-left X-coordinate
y : Upper-left Y-coordinate
w : Width
h : Height
width : (optional) Line width, in pixels. Default: 1
Default=no rectangles drawn.

108

6/20/96 Scenario Generator Users Manual

Example: draw rectangle 27.00 49.50 2.50 4.00

Explanation: This will draw a rectangle 2.5 units wide and 4 units long, using a 1 pixel
wide line, with the upper left corner of the rectangle located at xy grid position (27,49.5).

Draw Circle
This command allows the user to draw arbitrary circles in the game area display. This
command can be used much like the draw line and draw rectangle command to demark
geographic areas, such as landing zones, as needed in the playing area.

Format: draw circle x y radius
x : Center X-coordinate
y : Center Y-coordinate
radius : Radius of circle
width : Line width, in pixels. Default: 1
Default=no circles drawn.

Example: draw circle 10.0 50.0 5.0

Explanation: This will draw a circle with a radius of 5 units, using a 1 pixel wide line,
centered at xy grid position (10,50).

Penetration Number
This command specifies the total number of penetration zones contained in the game area
display, and must come before the penetration zones are defined. (See penetration zone
command for an explanation of the penetration zone use)

Format: penetration number npen
npen: Number of penetration zones. Default is npen= 1, a circular penetration zone

that will be sensitive to all task classes. If the user fails to give the location of
the zones they will be clustered at the center of the display area at (s/2, s/2).

Example: penetration number 7

Explanation: Defines a total of seven penetration zones in the game area display.

Penetration Zone
This command defines the actual penetration zones, either rectangular or circular. The
zones are numbered starting from 0. The zones will appear in the display as a thick red
bordered area. Penetration zones represent areas that are sensitive to various task classes.

109

6/20/96 Scenario Generator Users Manual

When a zone is penetrated by these tasks the team losses points. This allows the scenario
designer to create an area, vice a specific point, of vulnerability that must be protected -
i.e.: the area around a carrier in which the enemy has the capability (and desire) to strike
with cruise missiles.

Format one: penetration zone rectangle ip x y w h
ip: number of the penetration zone
x: floating number, the x coordinate of upper left corner of the penetration zone.

-# y: floating number, the y coordinate of upper left corner of the penetration zone.
w: floating number, the width of the penetration zone.
h: floating number, the height of the penetration zone.

Format two: penetration zone circle ip x y r
ip: number of the penetration zone
x: floating number, the x coordinate of center of the penetration zone.
y: floating number, the y coordinate of center of the penetration zone.
r: floating number, the radius of the penetration zone.
Default: penetration zone circle, in the center of the screen with radius

0.2*(simulation scale)

Example: penetration zone rectangle 0 26.50 70.00 4.00 6.00
penetration zone circle 1 25.00 45.00 5.00

Explanation: Assuming npen=2, the first command will create a rectangular penetration
zone, with id=0,4 units wide and 6 units long with the upper left corner located at xy grid
position (26.5,70). The second command will create a circular penetration zone, with id=l,
of 5 units radius with the center located at xy grid location (25,45). (The individual task
sensitivity to these zones is defined in the task penetration command)

3. CLASS INFORMATION

The platform/task class information specified in this section sets the common features
of the platforms and tasks, which are in turn used to generate specific platform/task state
information.

3.1 platform class information

Platform Classes
This command sets the number of unique classes of platforms that exist in the scenario.
For the purpose of platform class number both platforms (parent) and subplatforms (child)
are counted equally. (The actual specification of platform/subplatform relationship is set

110

6/20/96 Scenario Generator Users Manual

using the platform subplatform command)

Format: platform classes npc
npc : integer number up to 35. Default=6

Example: platform classes 26

Explanation: A total of 26 classes are available for use in the scenario (for both platforms
and subplatforms combined)

Platform General
This command sets the parameters for each specific platform class. These initial
specifications define the platform and form the basis for platform uniqueness. The values
of these parameters and their various combinations provide a broad range of options to the
scenario designer to create models of real-world assets. (Air, sea and ground)

Format: platform general id type class mv xfr
reu ret e r d

id: integer, uniquely identifying this platform class, starting from 0.
type: single character A, S, G for Air, Sea, or Ground vehicles. default=W
class: string of up to 3 characters which gives a "name" to this class of platforms.

default='Pid' (where id = id# above)
mv: maximum velocity of platforms of this class. Default=0.0070*simu_scale
xfr: transferability flag:

= 0 platforms of this class cannot be transferred.
= 1 platforms of this class can be transferred.

Default=l
The following variables refer to the platform class when used as a subplatform. They
are NOT optional parameters.
ret: return ability flag:

= 0 subplatforms of this class cannot be returned after being launched
= 1 subplatforms of this class can be returned after being launched. Default=l.

reu: reusable flag:
= 0 subplatforms of this class cannot be reused once they are used in attack.
= 1 subplatforms of this class can be reused for multiple attacks

Defaults.
e: endurance, floating number of seconds that the subplatform is available for use,

once launched. Default=60.0
r: refuel time, floating number of seconds. The time between the return of an asset

and its availability for relaunch. Default=5.0
d: launch delay, floating number of seconds. Default=20.0.

Ill

6/20/96 Scenario Generator Users Manual

Example: platform general 0 A VF 0.9900 1
1 1 3000.00 3.00 15.00

Explanation: This defines a platform class with an id=0, as an Air type. Any platform of
this class will be named VF, and have a maximum velocity of .99 (1.0 equals one mile per
second). Any such platform is transferable, returnable and reusable, with a life duration of
3000 seconds (50 minutes), a refueling time of 3 seconds and a launch delay of 15 seconds.
Transferability indicates that the platform can be given to another DM. Returnability
indicates that the platform can go back to its original parent. Reusability indicates that the
platform will be available for use again after an attack.

Platform Resource
This command assigns the default values of the resource vector associated with that class
of platform. These values will be carried through to each platform ofthat class. This
allows the scenario designer to "arm" the platforms with various "weapons", giving the
platform the ability to engage tasks.

Format: platform resource id w(l) w(2) ... w(nres)
id : integer number, identification of the platform class.
#w(I): integer number, the amount of resource of category I. Default w(I)=l

Example: platform resource 0 50 50 50 50 50 50 50

Explanation: Each element in the resource vector of platforms of class 0 is assigned a
value of 50. These resources, defined in number_ of resources, can represent the
platform's ability to engage air targets, its ability to clear minefields, etc.

Platform Range
This command sets the range of the sensors contained on each platform. Each platform has
three types of notional sensors which provide information on air, sea and ground tasks,
respectfully. Associated with each sensor are five ranges, each displayed by a separate ring
centered on the platform. If a task is within the outer most range ring it can be seen
(detected) by the platform. If the task is within the next range ring the various attributes of
the task will be read (measurement), although the values may be masked/corrupted by
noise. If the task is within the third range ring the task class becomes known automatically
(identification). The fourth range ring denotes the range in which the task can be attacked
by the platform. The last range ring indicates the range at which the platform can be
attacked by the task. By varying these ranges the scenario designer can model various
abilities and limitations of the platform class.

112

6/20/96 Scenario Generator Users Manual

Format: platform range id
r(l,l) r(l,2) r(l,3) r(l,4) r(l,5) #Air = type 1
r(2,1) r(2,2) r(2,3) r(2,4) r(2,5) #Sea = type 2
r(3,l) r(3,2) r(3,3) r(3,4) r(3,5) #Ground = type 3

id: integer number uniquely identifying the platform class.
r(i j): positive floating number.
r(i, 1) = detection range of platforms of class id on task type I
r(i,2) = measurement range of platforms of class id on task type I
r(i,3) = identification range of platforms of class id on task type I
r(i,4) = attack range of platforms of class id on task type I
r(i,5) = 'be-attacked' rangeofplatformsofclassidontasktypel
Default r(ij)=(.3-.05i)*simu_scale

Example: platform range 0
30.00 25.00 20.00 10.00 3.0
20.00 15.00 10.00 5.00 2.0
10.00 10.00 8.00 7.00 1.0

Explanation: Platforms of class 0 have been assigned values for air, sea and ground ranges.
In this example, for air the detection range is set to 30, the measurement range is set to 25,
and the identification range is set to 20. The range at which the platform can attack an air
task is set at 10 while the range at which the platform is vulnerable to attack by an air task
is set to 2. (The sea and ground ranges are different than the air.)

Platform Accuracy
This command sets the "noise" applied to the attribute values that are measured when tasks
are within the platforms' measurement range. This noise allows the simulation designer to
more closely model the real-world environment by introducing doubt into the attribute
readings, which could be caused by a variety of elements, such as atmospheric conditions
or the stealth characteristics of a target.

Format: platform accuracy id
e(l,l)e(l,2)...e(l,natt)
e(2,l)e(2,2)... e(2,natt)
e(3,l) e(3,2)... e(3,natt)

id: integer number uniquely identifying the platform class.
e(ij): Positive floating number which gives the standard deviation of the (Gaussian)

measurement noise for sensor of type I when measuring task attribute j.
Default: e(i j)=0.00, i.e. no noise.

113

6/20/96 Scenario Generator Users Manual

NOTE: if e(ij) < 0.0 then that sensor makes NO measurement ofthat attribute.

Example: platform accuracy 0
0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 -1.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.00

Explanation: In this case the sensor noise is zero for almost all attributes and sensor types.
However, the third attribute of the air sensor has measurement noise with a standard
deviation .15. The standard deviation of last attribute in all sensors (air, sea and ground) is
set to a negative one, which will result in its not being measured by any of the sensors, of
platform class 0.

Platform Subplatform

Subplatforms are previously defined platforms that reside on another platform (example:
aircraft on a carrier, troops on a helicopter). Platforms of a given class may contain a
number of subplatforms from different platform classes. There are several guidelines that
apply to the subplatform concept:

1) The same class of subplatform (child) can reside on many platforms (parent).
2) All subplatforms of a given class are identical, independent of the platform they

reside within.
3) The "depth" of the nesting structure is defmed by the designer and is not limited

by the software - however, loops are not allowed, (i.e.: A=> Bp A)

This command sets several specifications.
1) The number of subplatform classes that a specific platform class has.
2) The name of the subplatform classes.
3) How many of each subplatform is contained onboard the platform.
4) Who owns the various subplatforms when they are launched.

NOTE: The default is no subplatforms present on platforms

Format: platform subplatform id num
sub_class(l) sub_class(2)... sub_class(num)
n(l) n(2) ... n(num)
owner(l) owner(2) ... owner(num)

id: integer number, giving the unique identification of the platform class.
num: integer number, indicates the number of subplatform classes that this platform

class has, max=7 NOTE: The maximum number of subplatforms that can be

114

6/20/96 Scenario Generator Users Manual

'on-screen' at any one time is 100.
sub_class(I): the name of the subplatform class. This name must be one of the class

given in an earlier platform general command.

NOTE: The platform and subplatform classes must be defined (via the platform general
command) BEFORE the definition of their nesting structure.

n(I): the number of individual subplatforms of class 'sub_class(I)' on board this
platform class.

owner(I): the number of the decisionmaker who will own the individual subplatforms
of class 'sub_class(I)? when they are launched.

NOTE: If owner(I)= -1 these subplatforms will be owned by whomever "owns" the parent
platform - e.g. this gives the designer the ability to model self defense weapons.

Example: platform subplatform 15 3
VF VA H60
3 2 1
4 0 0

Explanation: Each platform of class 15 (parent) will have three subplatform classes
(children) onboard. The three subplatform classes are VF, quantity 3, owned by DM4; VA,
quantity 2, owned by DM0; and H60, quantity 1, owned by DM0. (See previous platform
general command for definition of class VF.)

3.2 Task class information

Task Class Number
This command sets the total number of task classes available for the scenario.

Format: task classes ntc
ntc : integer number, with the maximum 50. Default= 6

Example: task classes 24

Explanation: The total number of task classes is set to 24

Task General
This command sets the parameters for a specific task class. These initial specifications

115

6/20/96 Scenario Generator Users Manual

clearly define the task and form the basis for task uniqueness. The values of each
parameter and their various combinations provide a broad range of options for the scenario
designer to create models of real-world threats. These values are used each time a task of
this class is created.

Format: task general id type class mv p threatflg [iconfile]
id: integer uniquely identifying this task class, starts from 0.
type: single character A, S, G for Air, Sea or Ground tasks. Default = 'A'
class: string of up to 3 characters which gives a name to this class of tasks.

Default= class#0='A\ class#l='B* etc.
mv: maximum velocity of this class of tasks. Default=0.0040*simu_scale
#p: appearance probability of this class of task. Default p=l/ntc, where ntc is

total number of task classes.
threatflg: indicates whether the task is a threat or a neutral. Default=l

= 0 task is a neutral
= 1 task is a threat to the penetration zones specified in task penetration command.
= 2 task is a threat to specified penetrations zones and also to platforms, within a

radius Ri5 (specified in platform range) where the platform and task are both
of type I.

= 3 task is a threat to specified penetrations zones and also to platforms of any type
within a radius Ri5 (specified in the platform range command) where the task
is of type I.

= 9 task is a'job'to do.
iconfile: (optional) The name of an X bitmap icon file located in ~/usr/icon

Example: task general 0 G HL 0.0 0.0424 9 hill.icon

Explanation: This statement defines the task of "taking the hill". Tasks of this class have
id=0, are of type ground, and named HL. The maximum velocity is set to zero. The threat
flag is 9, which indicates that this task represents a job or mission to be performed. The
icon used to portray such tasks in the game will be hill.icon, which overrides the default
icon file for standard ground tasks.

Task Mean

This command sets the default values for the attribute vector. Unless overridden latter in
the task attributes portion of the scenario generator all tasks of the same task class will
have these mean values assigned to their attribute vector.

Format: task mean id a(l) a(2) ... a(natt)
id: integer number uniquely identifying the task class.
a(I): positive floating number, mean value of the attributes I of the task class.

116

6/20/96 Scenario Generator Users Manual

Default a(I)=I

Example: task mean 0 10.00 20.00 0.00 0.00 5.00 0.00 0.00 0.00 0.00 1.00

Explanation: Task Class number zero will have the above values assigned as the default
values for the attribute vector.

Task Sigma
This command sets the standard deviation of the tasks' attribute vector. This allows the
simulation designer to "smear" the attribute values that are associated with a specific task.
Unlike the platform accuracy command, which affects the sensors of a specific platform
class, this command affects the actual task values, independent of the platform, so the
variation in attribute values is applied to all platforms and all sensors that can "see" this
task class.

Format: tasksigmaid sigma(l) sigma(2) ... sigma(natt)
id: integer number, identification of the task class.
sigma(I): the value of the standard deviation on attribute I. Default sigma(I)=0.00

Example: task sigma 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Explanation: Task of class 0 will have their attribute vector generated without additional
values being added or subtracted to the mean attribute vector. (No sigma applied)

Task Mapping
This command specifies a linear mapping from the attributes of a task class to the resource
requirements for a successful attack on that class. The structure of the mapping for the
resource vector is: r =Aa+b, which allows for an assignment of attribute values to resource
values and for the addition of a constant. This allows the simulation designer to control the
resource match up between tasks and platforms, which enables a representation of the
differences in firepower and engagibility found in the real-world.

Format: task mapping id
A(l,l) A(l,2) ... A(l,natt) B(l)
A(2,l) A(2,2) ... A(2,natt) B(2)
A(nres,l) A(nres,2)... A(nres,natt) B(nres)

id: integer number, identifying the task class.
A(i j): Floating number, which indicates the mapping from task attributes to

resources required to attack a task of this class. Default: A: ith row = 0,
EXCEPT element A(1,1+2) = 1; if (I+2<=nattr)

#B: all B(I) = 0

117

6/20/96 Scenario Generator Users Manual

Example: task mapping 0
0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00

Explanation: This matrix directly maps the attributes into required resources for tasks of
class 0. The first line assigns resource one to attribute three, the second line assigns
resource two to attribute four, etc. The 1.0 in the B vector of resource seven indicates that
in addition to the one-to-one assignment from attributes to resources, one more unit of
resource seven is needed.

Task View
This command determines the team information structure for the detection of a specific
task claSs by any Platform owned by a specific DM. This allows the simulation designer to
tailor the tactical picture of the DM's to more closely resemble the real-world. (Various
degrees of "Global awareness" can be modeled via this command)

Format: task view id v(0) v(l) v(2)... v(ndm-l)
id: integer number, uniquely identifying the task class.
v(I): integer number which specifies the degree to which the decisionmaker Dmi

can observe this class of tasks. Its value can be 0,1 or 2. Default v(I)=2
= 0: DMi cannot see a task of this class unless the task happens to be within the

detection range of at least one of his own sensors.
= 1: DMi can see a task of this class if the task is detected by any of the sensors on

platforms owned by other DMS.
= 2: DMi can see a task of this class and get attribute/class information if the task

is within the measurement/identification ranges of any of the sensors on
platforms owned by other DMS.

Example: task view 0222222

Explanation: Task Class number zero can be seen by all Decisionmakers. Attribute values
of the task can be seen by all DM's if it is within the sensor range of any platform owned
by any decisionmaker.

Task Stealth
This optional command resets the detection, measurement, identification, attack and be-

118

6/20/96 Scenario Generator Users Manual

attack ranges for a specific task class vis-a-vis a specific platform class. (Overrides default
values.) This allows the scenario designer to tailor ranges down to an individual threat or
mission, which can be used to create the possibility of a late detection or non-detection of a
unique threat. (Example: ground or sea mines)

Format: task stealth idl id2 [sensor(l) sensor(2) sensor(3) attack(l) attack(2)]
idl: integer number, identifying the task class.
id2: integer number, identifying the platform class.
sensor(I): floating point numbers:

1=1: overrides sensor detection range r(j,l) of platforms of class id2 when
encountering tasks of class idl (that are of type j)

1=2: overrides sensor measurement range r(j,2) of platforms of class id2 when
encountering tasks of class idl (that are of type j)

1=3: overrides sensor identification range r(j,3) of platforms of class id2 when
encountering tasks of class id 1 (that are of type j)

Default: values r(j,i) as specified in platform range command — EXCEPT if threatflg = 2
or 3, in which case default values = r(j,5)

attack(I): floating point numbers:
1=1: overrides associated attack range r(j,4) of platforms of class id2 when

attacking tasks of class idl (that are of type j). Default: value = r(j,4),
EXCEPT if threat_flg = 2, in which case default value = 0.0

1=2: overrides associated be-attacked range r(j,5) of platforms of class id2 when
encountering tasks of class idl (that are of type j). Default: value = r(j,5) for
all values of threat flag.

Example: task stealth 0 0 100.00 90.00 80.00 20.00 0.00
task stealth 0 1 40.00 30.00 20.00 5.00 2.00

Explanation: Task class 0 has been assigned stealth values vis-a-vis platform class zero
and one. In this example, if we assume that task class 0 is of type air, then the new ranges
will apply to the Air ranges of the platforms specified. Line one sets the ranges for
task/platform 0/1 pairings at 100 for detection, 90 for measurement, 80 for identification,
20 for attack and 0 for be-attack, which will prevent the task from being able to attack the
platform. These new values will override the default value of the Air range for platforms
zero and one, previously specified platform range against this task class. All other ranges,
Sea and Ground, will retain the default values specified in platform range command.

Task Expertise (Not used in the current version of DDD - default values are hard-coded.)

119

6/20/96 Scenario Generator Users Manual

This command sets the level of expertise which the decisionmaker has to interpret the task
attribute measurements. This allows the scenario designer to "level the playing field";
which has a variety of uses, such as adjusting for the varying professional backgrounds of
the decisionmakers, which may affect team performance.

Format: task observe expertise id
0(0,1) 0(0,2) ... O(0,natt-1)
0(1,1) 0(1,2) ... 0(l,natt-l)
0(ndm-l,l) 0(ndm-l,natt-l)... 0(ndm-l,natt-l)

id: integer number, specifying the task class.
O(iJ): floating number to indicate the relative observation expertise for DMi on

attribute j for the tasks of the specified class, 0(ij) must be from 0.1 to 1,
Default 0(ij)= 1.0

Example: Task observe expertise 1
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1,0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Explanation: In this example all DM's have the same abilities to observe all task
attributes.

Task Destroy (Not used in the current version of DDD - default values are hard coded.)
This command sets the ability of the decisionmaker to destroy the specific task class. Like
task expertise, this command allows the user to "level the playing field" if the professional
backgrounds of the decisionmakers is such that a wide diversity of playing skills is
expected.

Format:
#id:
#d(I):

task destroy expertise id d(0) d(l)d(2) ... d(ndm-l)
integer number, identifying the task class.
floating number which indicates the degree of expertise DMi has in attacking
this class of tasks. It can take on value from 0 to 1, Default d(I)=l .0

Example: task destroy expertise 1 1 1 1 1 1 .5

Explanation: In this example, all Dm's have the same ability to destroy task number 1
with the exception of DM5, who has a "handicap of 50% in his ability to destroy the task.

120

6/20/96 Scenario Generator Users Manual

Task Attack
This command sets the ability of various decisionmakers to attack tasks of a given class.
This allows the scenario designer to control who can attack a given task class, which can
be used to highlight command structure differences as well as to control competition for
assets needed for the attack(s)..

Format: task attack id DMresp at(0) at(l) at(2)„. at(ndm-l)
id: integer number, specifying the task class.
DMresp: DM responsible for this class of tasks. Default=0
at(I): integer flag which indicates whether DMi is (or can be) assigned to attack tasks

of this class. Default at(I)=l
= 0, DMi is not assigned to attack the tasks.
= 1, DMi is assigned to attack the tasks.

Example: task attack 12111111

Explanation: In this example, the responsibility for tasks of class 1 is assigned to DM2,
but all DM's have the ability to attack tasks of this class when identified.

Task Penetration
This command sets the sensitivity of the penetration zones defined earlier in penetration
zones to the various task classes. This allows the scenario designer to create areas that
must be defended from attack by specific task classes.

Format: task penetration id p(0) p(l) ...p(npen-l)
id : The task class to which this command refers.
npen: The number of penetration zones defined by penetration number earlier,
p(I) : = 1 means class#id is capable of doing damage to penetration zone#I.
=0 means class#id cannot do damage to penetration zone#I.

Default p(I)=l
Example: task penetration 0 0000000

task penetration 1 0 0 0 0 110

Explanation: In line one the task class 0 cannot do damage to any of the seven penetration
zones defined. In line two the task number 1 can do damage to penetration zones four and
five.

4. STATE INFORMATION

The commands listed in this section provide the user the ability to specify parameters

121

6/20/96 Scenario Generator Users Manual

of individual platforms and tasks. If no specific state information is provided the scenario
generator will create values derived from the values contained in the previous class
commands.

Platform Number
This command specifies the total number of individual platforms used in the simulation.

Format: platform number nplat
nplat: integer number, with the maximum 99. Default 6

Example: platform number 11

Explanation: There are a total of eleven platforms in this simulation.

Platform Definition
This command allows the user to specify each individual platform used in the simulation,
as well as which decisionmaker has initial control over the platform and where it is located
at clock start. This command allows the scenario designer to specify order of battle for
own forces.

Format: platform definition id class dm x y
id: integer number between 0 to 100, giving a unique platform id.
class: string of up to 3 chars giving the unique name of the class this platform

belongs to as described in 'platform general' command, Default=name of class
#0 as described in 'platform general' command.

#dm: the DM this platform belongs to initially. Default=l
#x: x coordinate of the platform initial position.
y: y coordinate of the platform initial position.

Default (x, y) coordinates are generated randomly
Example: platform definition 0 CVN 4 70.00 15.00

Explanation: This places platform number 000 at xy grid location (70,15). It is a CVN,
and is owned initially by DM4.

NOTE: It is important that the designer provide a definition for the total number of
platforms specified in platform number, otherwise the scenario generator will create default
platforms (of class 0) to make up the total number.

Task Definition

This command allows the user to specify class and initial responsibility for each
individually numbered task to be used in the simulation, as well as the tasks' priority to the

122

6/20/96 Scenario Generator Users Manual

decisionmaker who is responsible for this task. This allows the scenario designer to
specify class and responsibility for each individual task, uniquely identifying each "target"
or "mission" presented to the team.

Format: task definition id classnum iDM priority
id: integer number between 200 and 399 giving a unique id to the task.
classnum: the class number to which this task belongs. Default: generated per

probabilities given in 'task general' command
iDM: the DM who is responsible for this task, Default=0
priority: priority of this task (an integer 0,1,2, or 3), Default=0

Example: task definition 200 2110

Explanation: Task number 200, task class 21, is the responsibility of decisionmaker one,
and has a (initial) priority of zero.

Task Attributes
This command can set the attribute values for an individual task specified in the
simulation. This allows the scenario designer to specify each task uniquely.

Format: task attributes id
at(l) at(2)... at(natt)

id: integer number from 200 to 399, giving an unique id to the task.
at(I): positive floating number, attributes of this task, Defaults are generated

randomly by task class according to values described in the task mean and task
sigma commands.

Example: task attributes 200
02.0 10.0 00.0 00.0 20.0 00.0 00.0 00.0 00.0 00.0

Explanation: In this example the task attributes are set for task number 200, overriding
the initially defined default values. Each value above will be assigned to the appropriate
position in the attribute vector.

Task Resource
This command sets the amount of resources required to properly engage the task (and
receive full point values - engaging task with less than the required amount will result in
"partial credit") This overrides any default values previously defined. This allows the
scenario designer to further tailor the properties of individual tasks to platforms.

Format: task resource id

123

6/20/96 Scenario Generator Users Manual

res(l) res(2)... res(nattr)
id: integer number from 200 to 399, giving a unique id to the task.
res(I): positive floating number, resources required to prosecute the task. Defaults
are generated from task attributes according to the procedure described in task

mapping.

Example: task resources 200
0 0 20 0 0 0 0

Explanation: In this example task 200 will require platform(s) with resources of at least
res(3)=20 in order for it to be properly engaged.

Task Prerequisites
This command sets an "order" in which selected tasks must be prosecuted. This allows the
scenario designer to cause the team to plan courses of action and mission priorities.

Format: task prerequisites id num pr(l) pr(2) ... pr(num)
id: integer number from 200 to 399, giving a unique id to the task.
num: integer number of prerequisite tasks that this task has
pr(I): the task number of a prerequisite for this class

NOTE: prerequisites must have lower task number to avoid cycles [i.e. pr(I) < id]
Default=task has no prerequisites (num=0)

Example: task prerequisites 310 3 236 237 238

Explanation: In this example task 310 has three prerequisites that must be accomplished
prior to engagement. If tasks 236,237, and 238 are not completed or have not disappeared
(not necessarily in any particular order) the simulation will not allow an attack on task 310.

Task Bias
This command is used to introduce a bias, or offset, in the measurements of a given tasks'
attributes. The bias will be reduced to 0 linearly when the task is within attack range of the
platform whose sensors are measuring the attributes.

Format: task bias id
b(l) b(2)... b(nattr)

id: integer number from 200 to 399, giving an unique id to the task.
b(I): floating point number, bias in task #id when reading attribute #1.

Default b(I)=0.00

124

6/20/96 Scenario Generator Users Manual

Example: task bias 211
0.0 0.0 1.0 1.0 -2.0 10.0 1.0 0.0 0.0 0.0

Explanation: Task 211, when measured, will have a bias applied, with the above values
added or subtracted to its attribute vector.

Task Spawn
This commands sets a parent/child relationship for tasks. As the "parent" task is either
engaged or destroyed a "child" task will then appear. This allows the scenario designer to
include a measure of mission "growth" in his initial planning of the scenario.

Format: task spawn id num type sid(l) ... sid(5)
sid(6) ... sid(10)
sid(num-4)... sid(num)

id: integer id of 'spawner' task for which new tasks will be spawned.
num: integer number of tasks to be spawned.
type: character A or D denoting a task Attack or task Disappear event.
sid(I): integer ids of'spawned' tasks.

NOTE: I) 0 < num < n, where n is specified via number of tasks command,
ii) a task can be both spawned and a spawner (ie, recursive),

however, a task cannot be spawned by more than one spawner.
iii) to prevent spawning cycles, ie, X spawns Y spawns X, we require id

<sid(I), 1= l..num.
iv) at most 5 spawned task ids specified per line, and, for num > 5, only

last line can have <= 5 task ids specified.

Example: task spawn 286 1 A 289

Explanation: In this example task 286, when attacked, will spawn task 289

Task Remove
This command inhibits arrival of future tasks depending on either the attack or
disappearance of a given task. This can be used by the scenario designer to "anticipate"
paths that may or may not be followed by the DM's during the simulation.

Format: task remove id num type did(l) ... did(5)
did(6) ... did(10)
did(num-4)... did(num)

125

6/20/96 Scenario Generator Users Manual

id: integer id of 'remover' task for which future tasks will be removed.
num: integer number of tasks to be removed.
type: character A or D denoting a task Attack or task Disappear event.
did(I): integer ids of'removed' tasks.

NOTE: I) 0 < num < n, where n is specified via number of tasks command.
ii) a task can be both removed and a remover (ie, recursive), moreover,

a task can be removed by more than one remover,
iii) at most 5 removed task ids specified per line, and, for num > 5, only

last line can have <= 5 task ids specified.

Example: task remove 2114 A 234 235 236 256

Explanation: In this example the attacking of task 211 will prevent 4 new tasks from
entering the scenario. This particular example was an artillery unit, in which by attacking
the launcher no further rounds will be fired at friendly units.

Game End
This command allows the scenario designer to specify the mission completion point, in
terms of attacking a specific task, which may occur before the time specified in game
duration.

Format: game end id time
id: game will gracefully end after the task number id has been attacked.
time: float delay time to wait before ending the game. Default: id=399, time=5.0.

Example: game end 390 5.00

Explanation: In this example the scenario run will terminate 5 seconds after an attack on
task 390 completes.

5. MANEUVER INFORMATION

Maneuvers describe the track of a task, which includes turning points, velocity and the
"life span". For each task the scenario generator allows the user to enter up to five
maneuver segments. The first element of the maneuver command defines the starting point
for the task, the last element defines the ending point. The commands between the start
and end point fall into two categories - ordinary and staying maneuvers. An ordinary
maneuver moves the task between a starting point and a destination point at the designated
velocity. A staying maneuver designates a staying period at the given position. The

126

6/20/96 Scenario Generator Users Manual

velocity used in this command is a relative velocity with a range from 0 (no velocity) to 1
(maximum velocity as specified in task class information).

Format: maneuver definition id time
flag(l) x(l) y(l) v(l)
flag(2) x(2) y(2) v(2)
flag(m) x(m) y(m) v(m)

id: integer number uniquely specifying this task.
time: floating number specifying the task arrival time. If this number is omitted, a
randomly generated arrival time will be assigned to the task.
flag(I): one character to indicate the type of the maneuver.

=m ordinary maneuver
=s maneuver of staying at a point
=e ending maneuver

v(I): relative velocity (0<vi<=l)., If flagi=s, then vi is the task's staying time
rather than its velocity.
x(I),y(I): coordinates.
Default: straight line maneuvers automatically generated, starting on a circle of radius
= (simulation scale)/2 and ending in the center of the screen.

Example: maneuver definition 200 1.00
s 18.00 89.00 3600.00
e 18.00 89.00 0.00

Explanation: In this example task 200 will appear at time 1.0 on the scenario clock. It will
appear at XY grid coordinates (18, 89) and remain stationary for a period of 3600 seconds,
then disappear.

Example: maneuver definition 2160.00
m 00.00 00.00 0.90
m 30.00 40.00 0.80
e 60.00 60.00 0.00

Explanation: In this example task 201 will appear at time 60.0 on the scenario clock. It
will appear at XY grid coordinates (00,00) and proceed to grid coordinates (30,40) with a
speed of .9 times the default maximum speed of the task class (defined in task definition).
Upon reaching the coordinates (30,40) the task will slow to .8 of maximum and turn
towards the final grid coordinates of (60,60), where upon reaching them the task will
disappeared,

127

6/20/96 Scenario Generator Users Manual

6. SETTING UP AN EXPERIMENTAL SPECIFICATION FILE

The procedure for generating the required files following scenario development is rather
straight forward. In order to understand how the scenario generator turns the designed
parameters into a scenario the file structure must be review.

6.1 Scenario files
There are two scenario data files that are used to set up the experimental environment: the
experiment specification file (xs) and the listing file (is).

6.1.1 Experiment specification file (xs)

The xs file is the input file to the scenario generator, which contains all designer specified
commands and values reviewed in the above sections. The file name is xsnnnn.dat, where
"xs" stands for experiment specification and the nnnn represents a four digit string used to
identify the specific scenario. Each xs file contains information for one scenario - for each
additional scenario multiple xsnnnn. dat files are required. The xsnnnn. dat file is used to
describe the scenario parameters to the scenario generator. The file is written in
experimental specification language (xsl) developed to provide users a friendly interface.
There are several very basic restrictions regarding the writing of the xs file:

• Blank lines are not allowed - use # as a separator between lines

• Command keywords must be a string of lower case characters

• The end of the class information block must include a flag: endof class info
The flag is used by the scenario generator as a control signal.

• Vectors and matrixes dimensions and sizes must match the limits specified either
by the designer or the default value. Missing or extra data will cause generator
errors.

• The order of the commands is important. The precedence outlined in the previous
sections must be followed.

• Comments may be used, however, the line must start with a #, which makes the
entire line a comment line.

6.1.2 Listing file (fa)

The Is file is the output file of the scenario generator, which is used in the controller
window to run the simulation. This file contains not only the information provided by the

128

6/20/96 Scenario Generator Users Manual

designer in the xs file but also any default and "filler" information needed to run the
simulation. The scenario generator uses the default values of all commands and data
strings to create the needed values. The file name is lsnnnn.dat, where Is stands for listing
and the nnnn represents the same four digit string used in the xs file definition.

6.2 scenario generation procedures
After the scenario designer has determined the parameters of the desired simulation an xs
must be created that contains all the relevant information. A "blank" xs file, or template, is
edited to fill in these desired parameters.

Once completed, the xs file is then run through the scenario generator using the
following command:

sgxsnnnn (using the appropriate file number)

If all information contained in the xs file has been entered in accordance with this
guides previous sections an Is file will be generated. This Is file can then be used by the
controller window to run the scenario.

If any errors in the format of the xs exist the scenario generator will respond with an
error message indicating that errors exist and in what line of the xs file they can be found.

129

7. EXAMPLE FILE

#<««««««« General Items »»»»»»»

decision structure 6

CJTF GCC MEU1 MEU2 CVBG ARG
0 0 110 0

simulation time 2400.0

number_of tasks 140
#.
simulation scale 100.0

numberof attributes 10

Value Time Air Sea Ground hold Mine tank Med enemy

number_of resources 7
air sea ground hold mine tank Med

renew interval 0.5
#.
random seed 1

message number 4

comm epoch 6.0

comm delay 5.0

request delay 5.0

transfer delay 10.0

attack delay 15.0

scramble time 0

scramble id 0

communication permission

0 1111
10 111
0 10 11
0 110 1
11110
111110

land area 0.00 40.0 30.0 100.0

130

draw line 5.0 95.0 5.0 75.0 2
draw line 5.0 75.0 19.5 83.0 2
draw line 19.5 83.0 26.5 83.0 2
draw line 15.0 68.0 26.6 72.0 2
draw line 15.0 50.0 15.0 68.0 2
draw line 15.0 50.0 25.0 45.0 2

draw rectangle 27.0 49.5 2.5 4.0
draw rectangle 27.0 64.5 2.5 4.0
draw rectangle 27.0 87.0 2.5 4.0

penetration number 7

penetration zone circle 0 25.00 45.00 5.00 # port area
penetration zone circle 1 24.00 60.00 5.00 # high ground area
penetration zone rectangle 2 26.5 70.00 4.00 6.0 # beach area one
penetration zone rectangle 3 26.5 80.00 4.00 6.0 # beach area two
penetration zone circle 4 5.00 95.00 5.00 # Airfield
penetration zone circle 5 70.00 15.00 7.00 # fleet area (CVN)
penetration zone circle 6 64.00 75.00 4.50 # fleet area (amphib)

#««««<««« Platform Class Information »»»»»»»
platform classes 26

platform 0: test platform for overall coverage
platform general 0 A GOD 0.99 1

1 1 3000.000 3.000 20.000
platform resource 0 50 50 50 50 50 50 50
platform range 0
100.00 99.00 98.00 97.00 00.00
100.00 99.00 98.00 97.00 00.00
100.00 99.00 98.00 97.00 00.00

platform accuracy 0
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

platform 1: carrier based fighter aircraft
platform general 1 A VF 0.45 1

0 0 600.000 3.000 10.000
platform resource 1 5 2 0 0 0 0 0
platform range 1

15.0 14.00 13.00 10.00 3.00
15.0 14.00 13.00 10.00 3.00
0.0 0.00 0.00 0.00 0.00

platform accuracy 1
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000

platform 2: shore based attack fighters

131

platform general 2 A F15 0.45 1
1 12700.00 3.00 300.00

platform resource 2 5 110 0 0 0
platform range 2

15.00 14.00 13.00 10.00 3.00
15.00 14.00 13.00 10.00 3.00
0.00 0.00 0.00 0.00 0.00

platform accuracy 2
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 000 -1 000

platform 3: carrier based attack aircraft
platform general 3 A VA 0.25 1

1 1 2700.000 3.000 10.000
platform resource 3 0550050
platform range 3

15.00 14.00 13.00 5.00 3.00
15.00 14.00 13.00 10.00 3.00
15.00 12.00 11.00 10.00 3.00

platform accuracy 3
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 000 -1 000

platform 4: carrier based MCM helicopter
platform general 4 A MCM 0.40 1

1 1 2700.00 3.000 10.000
platform resource 4 0 0 0 0 2 0 0
platform range 4
12.00 10.00 9.00 5.00 3.00
12.00 10.00 9.00 5.00 3.00
12.00 10.00 9.00 5.00 3.00

platform accuracy 4
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 000 -1 000

platform 5: SH60 carrier/frigate helicopter
platform general 5 A H60 0.40 1

1 1 900.00 3.000 20.000
platform resource 5 0 6 0 0 0 0 0
platform range 5
12.00 10.00 8.00 5.00 3.00
20.00 10.00 8.00 5.00 3.00
10.00 9.00 8.00 5.00 0.00

platform accuracy 5
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1 000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000

132

platform 6: amphib based attack helicopter
platform general 6 A HCB 0.40 1

1 1 2700.000 3.000 10.000
platform resource 6 005 00100
platform range 6
12.00 11.00 10.00 5.00 3.00
12.00 11.00 10.00 5.00 3.00
12.00 11.00 10.00 8.00 3.00
platform accuracy 6
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000

platform 7: amphib based troop carrier

0.000 0.000 0.000 0.000

helicopter
platform general 7 A HTP 0.45 1

1 1 2700.000 3.000 10.000
platform resource 7 0 0 5 5 0 0 0
platform range 7
12.00 10.00 9.00 5.00 3.00
12.00 10.00 9.00 5.00 3.00
10.00 9.00 8.00 5.00 3.00
platform accuracy 7
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000.
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000

platform 8: amphib based Medivac hell

0.000 0.000 0.000 -1.000

copter
platform general 8 A HMV 0.30 1

1 1 2700.000 3.000 15.00
platform resource 8 0 0 0 0 0 0 5
platform range 8
12.00 10.00 8.00 5.00 3.00
12.00 10.00 8.00 5.00 3.00
10.00 9.00 8.00 5.00 3.00
platform accuracy 8
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000
.#
platform 9: amphib based engineering (

0.000 0.000 0.000 -1.000

:ompany helicopter
platform general 9 A HE 0.40 1

1 1 2700.00 3.000 20.000
platform resource 9 0 0 0 0 5 0 0
platform range 9
12.00 10.00 8.00 5.00 3.00
12.00 10.00 8.00 5.00 3.00
10.00 9.00 8.00 5.00 0.00

platform accuracy 9
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

133

-1.000

platform 10: recon aircraft
platform general 10 A SR7 0.50 1

1 1 1200.000 3.000 30.000
platform resource 10 0000000
platform range 10

25.00 20.00 15.00 0.00 0.01
50.00 50.00 45.00 0.00 0.01
50.00 50.00 45.00 0.00 0.01

platform accuracy 10
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 000

platform 11: Sea born SAM
platform general 11 A SAM 0.99 0

0 0 60.00 3.000 10.000
platform resource 11 5 10 0 0 0 0
platform range 11
40.0 0.00 0.00 40.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

platform accuracy 11
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1 000

platform 12: ship based NGFS support rounds
platform general 12 A 51 0.00 0

0 0 60.00 3.000 10.000
platform resource 12 115 0 0 2 0
platform range 12
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

45.00 0.00 0.00 40.00 0.00
platform accuracy 12
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1 000

platform 13: stinger detachment
platform general 13 a SD 0.4 1

1 1 2700.000 3.000 10.00
platform resource 13 6000000
platform range 13

8.00 8.00 8.00 8.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

platform accuracy 13
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000

134

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000

platform 14: Frigate
platform general 14 S FFG 0.20 1

1 1 2700.000 3.000 20.000
platform resource 14 15 0 0 10 0
platform range 14

35.0 15.00 7.00 6.00 2.00
35.0 15.00 7.00 6.00 2.00
0.00 0.00 0.00 0.00 0.00

platform accuracy 14
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000

platform 15: aircraft carrier
platform general 15 S CVN 0.0 0

1 1 2700.000 3.000 20.000
platform resource 15 110 0 10 0
platform range 15
100.0 20.00 20.00 2.00 3.00
100.0 20.00 20.00 2.00 3.00
0.00 0.00 0.00 0.00 0.00

platform accuracy 15
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000

platform 16: Cruiser
platform general 16 S CG 0.2 1

1 1 2700.000 3.000 20.000
platform resource 16 1 10 0 10 0
platform range 16

40.0 20.00 20.00 00.00 3.00
15.00 14.00 12.00 00.00 3.00
0.00 0.00 0.00 0.00 0.00

platform accuracy 16
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000

platform 17: Destroyer one
platform general 17 S DD1 0.0 0

1 1 2700.000 3.000 20.000
platform resource 17 1 10 0 10 0
platform range 17

40.0 20.00 20.00 00.00 3.00
15.00 14.00 12.00 00.00 3.00
0.00 0.00 0.00 0.00 0.00

platform accuracy 17
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000

135

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 000 -1 000

platform 18: Destroyer two
platform general 18 S DD2 0.0 0

1 1 2700.000 3.000 20.000
platform resource 18 110 0 10 0
platform range 18

40.0 20.00 20.00 00.00 3.00
15.00 14.00 12.00 00.00 3.00
0.00 0.00 0.00 0.00 0.00

platform accuracy 18
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1 000

platform 19: Amphibious assault ship (MEU 1 embarked)
platform general 19 S LA 0.00 0

1 1 2700.000 3.000 20.000
platform resource 19 1 10 0 10 0
platform range 19
20.00 20.00 20.00 00.00 3.00
15.00 14.00 12.00 00.00 3.00
0.00 0.00 0.00 00.00 0.00

platform accuracy 19
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 000 -1 000

platform 20: Amphibious assault ship (MEU 2 embarked)
platform general 20 S LP 0.00 0

1 1 2700.000 3.000 20.000
platform resource 20 1 10 0 10 0
platform range 20
20.00 20.00 20.00 00.00 3.00
15.00 14.00 12.00 00.00 3.00
0.00 0.00 0.00 00.00 0.00

platform accuracy 20
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 000 -1 000

platform 21: Amphibious assault ship (CJTF assets embarked)
platform general 21 S LH 0.00 0

1 1 2700.000 3.000 20.000
platform resource 21 1 10 0 10 0
platform range 21
20.00 20.00 20.00 00.00 3.00
15.00 14.00 12.00 00.00 3.00
0.00 0.00 0.00 00.00 0.00

platform accuracy 21

136

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000

platform 22: LCAC
platform general 22 S LCI 0.25 0

1 1 2700.000 3.000 10.000
platform resource 22 0 0 0 0 0 0 0
platform range 22

0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
50.00 0.00 10.00 0.00 3.00

platform accuracy 22
0.000 0:000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000

platform 23: LCAC
platform general 23 S LC2 0.25 0

1 1 2700.000 3.000 10.000
platform resource 23 0 0 0 0 0 0 0
platform range 23

0.00 0.00 0.0 0.00 0.00
0.00 0.00 0.00 0.00 0.00
50.00 0.00 10.00 0.00 3.00

platform accuracy 23
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000

platform 24: ground born tracked infantry company
platform general 24 G TG 0.09 1

1 1 2700.000 3.000 10.00
platform resource 24 0 0 5 5 0 10
platform range 24

0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

50.00 30.00 10.00 5.00 3.00
platform accuracy 24
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 "0.000 -1.000

platform 25: sigonella
platform general 25 S BAS 0.00 0

1 1 2700.00 3.000 10.000
platform resource 25 0 0 0 0 0 0 0

latform range 25
0.00 0.00 0.00 0.00 0.0
0.00 0.00 0.00 0.00 0.0
0.00 0.00 0.00 0.00 0.0

137

platform accuracy 25
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1 000

aircraft carrier carrying: fighter, CAS, anti-ship helo's
platform subplatform 15 3

VF VA H60
3 2 1
4 0 0

cruiser carrying: SAM missiles
platform subplatform 16 1

SAM
10
-1

Destroyer 1 (MEU 1 asset) carrying 5 Inch fire mission
platform subplatform 17 1

51
10
2

Destroyer 2 (MEU 2 asset) carrying 5 Inch fire mission
platform subplatform 18 1

51
10
3

amphibious ship (MEU1) carrying: AAAV and attack/troop/engineer helicopter
platform subplatform 19 3

HCB HTP HE
1 1 1
2 2 2

amphibious ship (MEU2) carrying: troop/medivac/engineer helocopter
platform subplatform 20 3

HTP SD HMV
1 1 1
3 5 3

amphibious ship (CJTF) carrying : mine-countermeasure helicopter/troop helo
platform subplatform 21 2

MCM HTP
1 1
0 0

LCAC1 carrying: ground based infantry
platform subplatform 22 1

TG
1

138

2

LCAC2 carrying: ground based infantry
platform subplatform 23 1

TG
1
3

sigonella base providing: troop helos
platform subplatform 25 2

F15 SR7
1 1
0 0

#SP TK
#<««««««« Task Class Information »»»»»»»
task classes 24

task 0: ground mission (hill)
task general 0 G HL 0.10 0.211 9hill.icon
task mean 0 10.0 20.0 0.00 0.00 5.00 0.00 0.00 0.00 0.00 1.0
task view 0222222
task stealth 0 0 100.0 100.0 100.0 00.0 0.0
task stealth 0 14 100.0 100.0 100.0 00.0 0.0
task stealth 0 15 100.0 100.0 100.0 00.0 0.0
task stealth 0 16 100.0 100.0 100.0 00.0 0.0
task stealth 0 17 100.0 100.0 100.0 00.0 0.0
task stealth 0 18 100.0 100.0 100.0 00.0 0.0
task stealth 0 19 100.0 100.0 100.0 00.0 0.0
task stealth 0 20 100.0 100.0 100.0 00.0 0.0
task stealth 0 21 100.0 100.0 100.0 00.0 0.0
task stealth 0 22 100.0 100.0 100.0 00.0 0.0
task stealth 0 23 100.0 100.0 100.0 00.0 0.0
task attack 0 1 111111

task 1: ground mission (airport)
task general 1 G AP 0.00 0.211 9dullas.icon
task mean 1 30.0 10.0 0.00 0.00 10.00 10.00 0.00 0.00 0.00 1.0
task view 12 2 2 2 2 2

. task stealth 1 0 100.0 100.0 100.0 00.0 0.0
task stealth 1 14 100.0 100.0 100.0 00.0 0.0
task stealth 1 15 100.0 100.0 100.0 00.0 0.0
task stealth 1 16 100.0 100.0 100.0 00.0 0.0
task stealth 1 17 100.0 100.0 100.0 00.0 0.0
task stealth 1 18 100.0 100.0 100.0 00.0 0.0
task stealth 1 19 100.0 100.0 100.0 00.0 0.0
task stealth 1 20 100.0 100.0 100.0 00.0 0.0
task stealth 1 21 100.0 100.0 100.0 00.0 0.0
task stealth 1 22 100.0 100.0 100.0 00.0 0.0
task stealth 1 23 100.0 100.0 100.0 00.0 0.0
task attack 1 1 111111

139

task 2: ground mission (seaport)
task general 2 G SP 0.00 0.211 9 norfolk.icon
task mean 2 30.0 10.0 0.00 0.00 10.00 10.00 0.00 0.00 0.00 1.00
task view 2222222
task stealth 2 0 100.0 100.0 100.0 00.0 0.0
task stealth 2 14 100.0 100.0 100.0 00.0 0.0
task stealth 2 15 100.0 100.0 100.0 00.0 0.0
task stealth 2 16 100.0 100.0 100.0 00.0 0.0
task stealth 2 17 100.0 100.0 100.0 00.0 0.0
task stealth 2 18 100.0 100.0 100.0 00.0 0.0
task stealth 2 19 100.0 100.0 100.0 00.0 0.0
task stealth 2 20 100.0 100.0 100.0 00.0 0.0
task stealth 2 21 100.0 100.0 100.0 00.0 0.0
task stealth 2 22 100.0 100.0 100.0 00.0 0.0
task stealth 2 23 100.0 100.0 100.0 00.0 0.0
task attack 2 1 111111

task 3: ground mission (Holding/occupying)
task general 3 G HD 0.00 0.211 9hold.icon
task mean 3 0.0 10.0 0.00 0.00 0.00 5.00 0.00 0.00 0.00 1.00
task view 3 2 2 2222
task stealth 3 0 100.0 100.0 100.0 00.0 0.0
task stealth 3 14 100.0 100.0 100.0 00.0 0.0
task stealth 3 15 100.0 100.0 100.0 00.0 0.0
task stealth 3 16 100.0 100.0 100.0 00.0 0.0
task stealth 3 17 100.0 100.0 100.0 00.0 0.0
task stealth 3 18 100.0 100.0 100.0 00.0 0.0
task stealth 3 19 100.0 100.0 100.0 00.0 0.0
task stealth 3 20 100.0 100.0 100.0 00.0 0.0
task stealth 3 21 100.0 100.0 100.0 00.0 0.0
task stealth 3 22 100.0 100.0 100.0 00.0 0.0
task stealth 3 23 100.0 100.0 100.0 00.0 0.0
task attack 3 1 11110 0

task 4: ground mission (Taking)
task general 4 G TK .00 0.211 9take.icon
task mean 4 10.0 10.0 0.00 0.00 5.00 0.00 0.00 0.00 0.00 1.00
task view 4 2 2 2222
task attack 4 1 11110 0

task 5: ground contact (artillery)
task general 5 G AT .99 0.211 2 artillery.icon
task mean 5 2.0 10.0 0.00 0.00 0.00 0.00 0.00 2.00 0.00 1.00
task view 5222222
task stealth 5 0 100.0 100.0 100.0 100.0 00.0
task stealth 5 1 00.0 00.0 00.0 5.0 00.0
task stealth 5 2 00.0 00.0 00.0 5.0 00.0
task stealth 5 3 00.0 00.0 00.0 8.0 00.0
task stealth 5 4 00.0 00.0 00.0 00.0 00.0
task stealth 5 5 00.0 00.0 00.0 00.0 00.0
task stealth 5 6 00.0 00.0 00.0 6.0 00.0

140

task stealth 5 7 00.0 00.0 00.0 5.0 00.0
task stealth 5 8 00.0 00.0 00.0 00.0 00.0
task stealth 5 9 00.0 00.0 00.0 00.0 00.0
task stealth 5 10 100.0 50.0 50.0 00.0 00.0
task stealth 5 11 00.0 00.0 00.0 00.0 00.0
task stealth 5.12 50.0 50.0 50.0 50.0 00.0
task stealth 5 13 00.0 00.0 00.0 00.0 00.0
task stealth 5 14 00.0 00.0 00.0 00.0 00.0
task stealth 5 15 00.0 00.0 00.0 00.0 00.0
task stealth 5 16 00.0 00.0 00.0 00.0 00.0
task stealth 5 17 00.0 00.0 00.0 00.0 00.0
task stealth 5 18 00.0 00.0 00.0 00.0 00.0
task stealth 5 19 00.0 00.0 00.0 00.0 00.0
task stealth 5 20 00.0 00.0 00.0 00.0 00.0
task stealth 5 21 00.0 00.0 00.0 00.0 00.0
task stealth 5 22 00.0 00.0 00.0 00.0 00.0
task stealth 5 23 00.0 00.0 00.0 00.0 00.0
task stealth 5 24 50.0 50.0 50.0 5.0 00.0
task attack 5 1 111111

task 6: ground contact (Frog launchers)
task general 6 G FG .99 0.211 2 frog.icon
task mean 6 10.0 20.0 0.00 0.00 0.00 0.00 0.00 5.00 0.00 1.00
task view 6 2 2 22 2 2
task stealth 6 0 100.0 100.0 100.0 100.0 00.0
task stealth 6 1 00.0 00.0 00.0 5.0 00.0
task stealth 6 2 00.0 00.0 00.0 5.0 00.0
task stealth 6 3 00.0 00.0 00.0 8.0 00.0
task stealth 6 4 00.0 00.0 00.0 00.0 00.0
task stealth 6 5 00.0 00.0 00.0 00.0 00.0
task stealth 6 6 00.0 00.0 00.0 6.0 00.0
task stealth 6 7 00.0 00.0 00.0 5.0 00.0
task stealth 6 8 00.0 00.0 00.0 00.0 00.0
task stealth 6 9 00.0 00.0 00.0 00.0 00.0
task stealth 6 10 100.0 00.0 00.0 00.0 00.0
task stealth 6 11 00.0 00.0 00.0 00.0 00.0
task stealth 6 12 00.0 00.0 00.0 50.0 00.0
task stealth 6 13 00.0 00.0 00.0 00.0 00.0
task stealth 6 14 00.0 00.0 00.0 00.0 00.0
task stealth 6 15 00.0 00:0 00.0 00.0 00.0
task stealth 6 16 00.0 00.0 00.0 00.0 00.0
task stealth 6 17 00.0 00.0 00.0 00.0 00.0
task stealth 6 18 00.0 00.0 00.0 00.0 00.0
task stealth 6 19 00.0 00.0 00.0 00.0 00.0
task stealth 6 20 00.0 00.0 00.0 00.0 00.0
task stealth 6 21 00.0 00.0 00.0 00.0 00.0
task stealth 6 22 00.0 00.0 00.0 00.0 00.0
task stealth 6 23 00.0 00.0 00.0 00.0 00.0
task stealth 6 24 50.0 50.0 50.0 00.0 00.0
task attack 6 1111111

141

task 7: ground contact (silkworm anti-ship missile battery)
task general 7 G SWG 0.99 0.211 1 silkworm.icon
task mean 7 15.0 20.0 0.00 0.00 0.00 0.00 0.00 5.00 0.00 1.00
task view 72 22 222
task stealth 7 0 100.0 100.0 100.0 0.0 0.0
task stealth 7 1 0.0 0.0 0.0 5.0 0.0
task stealth 7 2 0.0 0.0 0.0 5.0 0.0
task stealth 7 3 0.0 0.0 0.0 8.0 0.0
task stealth 7 4 0.0 0.0 0.0 0.0 0.0
task stealth 7 5 0.0 0.0 0.0 0.0 0.0
task stealth 7 6 0.0 0.0 0.0 6.0 0.0
task stealth 7 7 0.0 0.0 0.0 5.0 0.0
task stealth 7 8 0.0 0.0 0.0 0.0 0.0
task stealth 7 9 0.0 0.0 0.0 0.0 0.0
task stealth 7 10 50.0 50.0 50.0 00.0 0.0
task stealth 7 11 0.0 0.0 0.0 0.0 0.0
task stealth 7 12 0.0 0.0 0.0 0.0 0.0
task stealth 7 13 0.0 0.0 0.0 0.0 0.0
task stealth 7 14 100.0 0.0 0.0 0.0 0.0
task stealth 7 15 100.0 0.0 0.0 0.0 0.0
task stealth 7 16 100.0 0.0 0.0 0.0 0.0
task stealth 7 17 100.0 0.0 0.0 0.0 0.0
task stealth 7 18 100.0 0.0 0.0 0.0 0.0
task stealth 7 19 100.0 0.0 0.0 0.0 0.0
task stealth 7 20 100.0 0.0 0.0 0.0 0.0
task stealth 7 21 100.0 0.0 0.0 0.0 0.0
task stealth 7 22 100.0 0.0 0.0 0.0 0.0
task stealth 7 23 100.0 0.0 0.0 0.0 0.0
task stealth 7 24 100.0 0.0 0.0 0.0 0.0
task stealth 7 25 100.0 0.0 0.0 0.0 0.0
task attack 7 1111111

task 8: ground contact (mines)
task general 8 GMN 0.01 0.211 2mines.icon
task mean 8 5.0 10.0 0.00 0.00 0.00 0.00 2.00 0.00 0.00 1.00
task view 8222222
task stealth 8 0 100.0 100.0 100.0 100.0 02.5
task stealth 8 1 0.0 0.0 0.0 0.0 0.0
task stealth 8 2 0.0 0.0 0.0 0.0 0.0
task stealth 8 3 0.0 0.0 0.0 0.0 0.0
task stealth 8 4 0.0 0.0 0.0 0.0 0.0
task stealth 8 5 0.0 0.0 0.0 0.0 0.0
task stealth 8 6 0.0 0.0 0.0 0.0 0.0
task stealth 8 7 0.0 0.0 0.0 0.0 0.0
task stealth 8 8 0.0 0.0 0.0 0.0 0.0
task stealth 8 9 00.0 00.0 00.0 8.0 02.0
task stealth 8 10 0.0 0.0 0.0 0.0 0.0
task stealth 8 11 0.0 0.0 0.0 0.0 0.0
task stealth 8 12 0.0 0.0 0.0 0.0 0.0
task stealth 8 13 0.0 0.0 0.0 0.0 0.0
task stealth 8 14 0.0 0.0 0.0 0.0 0.0

142

0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
4.0 4.0 4.0 0.0 01.0
inn

task stealth 8 15
task stealth 8 16
task stealth 8 17
task stealth 8 18
task stealth 8 19
task stealth 8 20
task stealth 8 21
task stealth 8 22
task stealth 8 23
task stealth 8 24
task attack 8 1

task 9: sea contact (mines)
task general 9 SMS 0.01 0.211 2mines.icon
task mean 9 5.0 10.0 0.00 0.00 0.00 0.00 2.00 0.00 0.00 1.00
task view 9 2 2 2 2 2 2
task stealth 9 0 100.0 100.0 100.0 100.0 02.5
task stealth 9 4 6.0 5.0 3.0 10.0 00.0

3.0 00.0 2.0
3.0 00.0 2.0
3.0 00.0 2.0
3.0 00.0 2.0
3.0 00.0 2.0
3.0 00.0 2.0
3.0 00.0 2.0
3.0 00.0 2.0
3.0 00.0 2.0
3.0 00.0 2.0

;k attack 9 0 11111

task 10: air contacts (sea attackers)
task general 10 A AS 0.4 0.211 1 air.icon
task mean 10 15.0 20.0 5.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
task view 10222222
task attack 10 0 1000 1 1

#task 11: air contacts (ground attackers)
task general 11 A AG 0.2 0.127 1 air.icon
task mean 11 4.0 20.0 5.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
task view 11 111111
task attack 11 1111111 •

task 12: air contacts (enemy helo)
task general 12 A HH.18 0.211 1 helo.icon
task mean 12 15.0 10.0 6.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
task view 12 2 2 2 2 2 2
task attack 12 0 1 1 1 1 1 1

task 13: air contacts (neutrals)
task general 13 A NU 0.3 0.211 0 air.icon
task mean 13 10.0 10.0 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

143

task stealth 9 14 6.0 5.0
task stealth 9 15 6.0 5.0
task stealth 9 16 6.0 5.0
task stealth 9 17 6.0 5.0
task stealth 9 18 6.0 5.0
task stealth 9 19 6.0 5.0
task stealth 9 20 6.0 5.0
task stealth 9 21 6.0 5.0
task stealth 9 22 6.0 5.0
task stealth 9 23 6.0 5.0
task attack 9 0 111111

task view 13 2 2 2222
task attack 13 0 1 1 1 1 1 1

task 14: ground contacts (enemy tanks, vehicles)
task general 14 G TN 0.02 0.211 2 tanLicon
task mean 14 5.0 10.0 0.00 0.00 0.00 0.00 0.00 10.00 0.00 1.00
task view 142 2 2 2 2 2
task stealth 14 0 100.0 100.0 100.0 100.0 02.5
task stealth 14 1 0.0 0.0 0.0 0.0 00.0
task stealth 14 2 0.0 0.0 0.0 0.0 00.0
task stealth 14 3 10.0 10.0 10.0 8.0 00.0
task stealth 14 4 0.0 0.0 0.0 0.0 00.0
task stealth 14 5 0.0 0.0 0.0 0.0 00.0
task stealth 14 6 10.0 10.0 10.0 6.0 00.0
task stealth 14 7 0.0 0.0 0.0 0.0 00.0
task stealth 14 8 0.0 0.0 0.0 0.0 00.0
task stealth 14 9 0.0 0.0 0.0 0.0 00.0
task stealth 14 10 5.0 5.0 5.0 0.0 02.5
task stealth 14 11 0.0 0.0 0.0 0.0 00.0
task stealth 14 12 0.0 0.0 0.0 50.0 02.5
task stealth 14 13 0.0 0.0 0.0 0.0 00.0
task stealth 14 14 0.0 0.0 0.0 0.0 00.0
task stealth 14 15 0.0 0.0 0.0 0.0 00.0
task stealth 14 16 0.0 0.0 0.0 0.0 00.0
task stealth 14 17 0.0 0.0 0.0 0.0 00.0
task stealth 14 18 0.0 0.0 0.0 0.0 00.0
task stealth 14 19 0.0 0.0 0.0 0.0 00.0
task stealth 14 20 0.0 0.0 0.0 0.0 00.0
task stealth 14 21 0.0 0.0 0.0 0.0 00.0
task stealth 14 22 0.0 0.0 0.0 0.0 00.0
task stealth 14 23 0.0 0.0 0.0 0.0 00.0
task stealth 14 24 8.0 6.0 6.0 3.0 02.5
task attack 14 1 0 11111

task 15: ground contacts (neutrals)
task general 15 G NU 0.05 0.211 0
task mean 15 10.0 10.0 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00
task view 15 222 222
task attack 15 0 000000

task 16: sea contact (Patrol boats)
task general 16 S PB .05 0.211 1 ship.icon
task mean 16 15.0 10.0 0.00 6.00 0.00 0.00 0.00 0.00 0.00 1.00
task view 16 2 2 22 22
task attack 16 0 10 0 0 11

task 17: sea contacts (enemy submarines)
task general 17 S SS 0.05 0.211 1 sub.icon
task mean 17 15.0 10.0 0.00 5.00 0.00 0.00 0.00 0.00 0.00 1.00
task view 172 2 2 2 2 2
task stealth 17 0 100.0 100.0 100.0 100.0 02.5

144

task stealth 17 1 10.0 10.0 10.0 0.0 00.0
task stealth 17 2 10.0 10.0 10.0 0.0 00.0
task stealth 17 3 10.0 10.0 10.0 0.0 00.0
task stealth 17 4 10.0 10.0 10.0 0.0 00.0
task stealth 17 5 20.0 20.0 20.0 10.0 00.0
task stealth 17 6 10.0 10.0 10.0 0.0 00.0
task stealth 17 7 10.0 10.0 10.0 0.0 00.0
task stealth 17 8 10.0 10.0 10.0 0.0 00.0
task stealth 17 9 10.0 10.0 10.0 0.0 00.0
task stealth 17 10 30.0 10.0 10.0 0.0 00.0
task stealth 17 11 00.0 00.0 00.0 0.0 00.0
task stealth 17 12 00.0 00.0 00.0 0.0 00.0
task stealth 17 13 00.0 00.0 00.0 0.0 00.0
task stealth 17 14 35.0 15.0 7.0 6.0 2.0
task stealth 17 15 8.0 8.0 7.0 00.0 2.0
task stealth 17 16 10.0 9.0 7.0 00.0 2.0
task stealth 17 17 8.0 8.0 7.0 00.0 2.0
task stealth 17 18 8.0 8.0 7.0 00.0 2.0
task stealth 17 19 8.0 8.0 7.0 00.0 2.0
task stealth 17 20 8.0 8.0 7.0 00.0 2.0
task stealth 17 21 8.0 8.0 7.0 00.0 2.0
task attack

task 18: si

17 0 1000 1 1

sa contact (Sea-born Anti-ship cruise missiles)
task genera 18 S ML 0.99 0.211 1
task mean 18 15.0 10.0 0.00 5.00 0.00 0.00 0.00 0.00 0.00 1.00
task view 18 2 2 2222
task attack

#task 19: s«

18 0 10001 1

;a contacts (neutrals)
task genera 19 S NU 0.05 0.211 0 ship.icon
task mean 19 10.0 10.0 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00
task view 19222 222
task attack

task 20: N

19 0 00 00 1 1

fedivac mission
task general 20 G MV 0.00 0.211 9 cross.icon
task mean : 20 5.0 10.0 0.00 0.00 0.00 0.00 0.00 0.00 5.00 0.00
task view 20 2 2 2222
task stealth 20 20 100.0 100.0 100.0 100.0 0.0
task stealth 20 24 100.0 100.0 100.0 100.0 0.0
taskattack 20 0 1 1 1 1 1 1

task 21: Swamp
task general 21 G SM .00 0.211 2 swamp.icon.nolabel
task mean 21 2.0 10.0 0.00 0.00 20.00 0.00 0.00 0.00 0.00 0.00
task view 21 2 2 2222
task stealth 21 0 100.0 100.0 100.0 00.0 0.0
task stealth 21 10 100.0 100.0 100.0 00.0 0.0
task stealth 21 14 100.0 100.0 100.0 00.0 0.0
task stealth 21 15 100.0 100.0 100.0 00.0 0.0

145

task stealth 21 16 100.0 100.0 100.0 00.0 0.0
task stealth 21 17 100.0 100.0 100.0 00.0 0.0
task stealth 21 18 100.0 100.0 100.0 00.0 0.0
task stealth 21 19 100.0 100.0 100.0 00.0 0.0
task stealth 21 20 100.0 100.0 100.0 00.0 0.0
task stealth 21 21 100.0 100.0 100.0 00.0 0.0
task stealth 21 24 100.0 100.0 100.0 00.0 2.0
task stealth 21 25 100.0 100.0 100.0 00.0 0.0
task attack 21 1 111111

task 22: Air contact (silkworm anti-ship missile battery)
task general 22 A SWA 0.99 0.211 2 silkworm.icon
task mean 22 15.0 20.0 0.00 0.00 0.00 0.00 0.00 5.00 0.00 1.00
task view 22222 22 2
task stealth 22 0 100.0 100.0 100.0 100.0 0.0
task stealth 22 1 0.0 0.0 0.0 0.0 0.0
task stealth 22 2 0.0 0.0 0.0 0.0 0.0
task stealth 22 3 0.0 0.0 0.0 0.0 0.0
task stealth 22 4 0.0 0.0 0.0 0.0 0.0
task stealth 22 5 0.0 0.0 0.0 0.0 0.0
task stealth 22 6 0.0 0.0 0.0 0.0 0.0
task stealth 22 7 0.0 0.0 0.0 0.0 0.0
task stealth 22 8 0.0 0.0 0.0 0.0 0.0
task stealth 22 9 0.0 0.0 0.0 0.0 0.0
task stealth 22 10 50.0 50.0 50.0 0.0 0.0
task stealth 22 11 0.0 0.0 0.0 0.0 0.0
task stealth 22 12 0.0 0.0 0.0 0.0 0.0
task stealth 22 13 0.0 0.0 0.0 0.0 0.0
task stealth 22 14 100.0 50.0 50.0 0.0 0.0
task stealth 22 15 100.0 50.0 50.0 0.0 0.0
task stealth 22 16 100.0 50.0 50.0 0.0 0.0
task stealth 22 17 100.0 50.0 50.0 0.0 0.0
task stealth 22 18 100.0 50.0 50.0 0.0 0.0
task stealth 22 19 100.0 50.0 50.0 0.0 0.0
task stealth 22 20 100.0 50.0 50.0 0.0 0.0
task stealth 22 21 100.0 50.0 50.0 0.0 0.0
task stealth 22 22 100.0 50.0 50.0 0.0 0.0
task stealth 22 23 100.0 50.0 50.0 0.0 0.0
task stealth 22 24 100.0 50.0 50.0 0.0 0.0
task stealth 22 25 100.0 50.0 50.0 0.0 0.0
task attack 22 1 111111

task 23: Dummy task with no value
task general 23 A DUM 0.99 0.211 2
task mean 23 0.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
task view 23 2 22 22 2
task attack 23 0 000000

task penetration 0 0000000
task penetration 1 0 0 0 0 0 0 0
task penetration 2 0 000 0 00

146

task penetration 3 000000 0
task penetration 4 0000000
task penetration 5 0 0 110 0 0
task penetration 6 0 0 110 0 0
task penetration 7 0 0 0 0 0 1 1
task penetration 8 0000000
task penetration 9 0 000 00 0
task penetration 10 0 0 0 0 0 1 1
task penetration 110 0 110 0 0
task penetration 12 0 0 0 0 0 11
task penetration 130000000
task penetration 14 0000000
task penetration 150000000
task penetration 16 0 0 0 0 0 1 1
task penetration 17 0 0 0 0 0 11
task penetration 18 0 0 0 0 0 11
task penetration 19 0000000
task penetration 20 0000000
task penetration 210000000
task penetration 22 0 0 0 0 0 1 1

endofclassinfo

#<««««««« State Information »»»»»»»

platform number 11

platform definition 0 CVN 4 70.00 15.00
platform definition 1 CG 4 88.00 54.00
platform definition 2 FFG 4 90.00 50.00
platform definition 3 DD1 5 40.00 73.00
platform definition 4 DD2 5 40.00 78.00
platform definition 5 LA 5 64.00 73.00
platform definition 6 LP 5 64.00 77.00
platform definition 7 LH 5 64.00 75.00
platform definition 8 LCI 2 60.00 73.00
platform definition 9 LC2 3 60.00 75.00
platform definition 10 BAS 0 96.00 04.00
#platform definition 11 GOD 0 50.00 50.00

#TASK DEFINITIONS

Tasks 200-225 (swamp areas)

task definition 200 21 1 0

task definition 201 21 1 0

task definition 202 21 1 0

147

task definition 203 21 1 0

task definition 204 21 1 0

task definition 205 21 1 0

task definition 206 21 1 0

task definition 207 21 1 0

task definition 208 21 1 0

task definition 209 21 1 0

task definition 210 21 1 0

task definition 211 21 10

task definition 212 2110

task definition 213 21 10

task definition 214 21 10

task definition 215 21 10

task definition 216 21 10

task definition 217 21 10

task definition 218 21 10

task definition 219 21 10

task definition 220 21 10

task definition 221 21 1 0

task definition 222 21 1 0

task definition 223 21 1 0

task definition 224 21 1 0

task definition 225 21 10

#-
Tasks 226-230 (ground mines)

task definition 226 23 1 0

148

task definition 227 23 1 0

task definition 228 23 1 0

task definition 229 23 1 0

task definition 230 23 1 0

Tasks 231-235 (ground contacts - enemy)
task definition 231 23 10

task definition 232 23 1 0

task definition 233 23 1 0

task definition 234 23 1 0

task definition 235 23 1 0

.
Tasks 236-240 (sea mines)

task definition 236 9 00

task definition 237 9 0 0

task definition 238 9 0 0

task definition 239 23 0 0

task definition 240 23 0 0

Tasks 241-250 (artillery)

task definition 241 5 1 0

task definition 242 5 1 0

task definition 243 5 1 0

task definition 244 5 1 0

task definition 245 5 1 0

task definition 246 5 1 0

task definition 247 5 1 0

149

task definition 248 5 1 0

task definition 249 5 1 0

task definition 250 5 1 0

Tasks 251-255 (ground contacts - enemy)

task definition 25123 1 0

task definition 252 23 1 0

task definition 253 23 1 0

task definition 254 23 1 0

task definition 255 23 1 0

Tasks 256 - 260 (ground mines)

task definition 256 8 1 0

task definition 257 8 1 0

task definition 258 23 1 0

task definition 259 23 1 0

task definition 260 23 1 0

Tasks 261-265 (aircontacts, anti-shipping)

task definition 261 10 0 1

task definition 262 10 0 1

task definition 263 23 0 1

task definition 264 23 0 1

task definition 265 23 0 1

Tasks 266-270 (aircontacts, anti-ground)

task definition 266 23 1 1

task definition 267 23 1 1

150

task definition 268 23 1 1

task definition 269 23 1 1

task definition 270 23 1 1

Task 271-275 (air contacts - helicopter)

task definition 271 12 0 3

task definition 272 12 0 3

task definition 273 23 0 3

task definition 274 23 0 3

task definition 275 23 0 3

Task 276-280 (air contacts - neutral)

task definition 276 13 0 3

task definition 277 23 0 3

task definition 278 23 0 3

task definition 279 23 0 3

task definition 280 23 0 3

Task 281-285 (ground contacts - frog launchers)

task definition 281 6 13

task definition 282 23 1 3

task definition 283 23 1 3

task definition 284 23 1 3

task definition 285 23 1 3

Task 286-290 (ground contacts - silkworm launchers)

task definition 286 7 1 3 #(ground)

151

task definition 287 23 1 3

task definition 288 23 1 3

task definition 289 22 1 3 #(air)

task definition 290 23 1 3

Task 291-295 (medivac mission)

task definition 291 23 0 3

task definition 292 23 0 3

task definition 293 23 0 3

task definition 294 23 0 3

task definition 295 23 0 3

Task 296-300 (sea contacts - submarine)

task definition 296 17 0 3

task definition 297 17 0 3

task definition 298 23 0 3

task definition 299 23 0 3

task definition 300 23 0 3

Task 301-305 (sea contacts - patrol boats)

task definition 301 16 0 3

task definition 302 16 0 3

task definition 303 23 0 3

task definition 304 23 0 3

task definition 305 23 0 3

Tasks 306-314 (ground missions)

task definition 306 0 10 #(hill)

152

task definition 307 2 1 0 #(port)

task definition 308 110 #(airport)

task definition 309 4 10 #(taking beach one)

task definition 310 4 1 0 #(taking beach two)

task definition 311 3 10

task definition 312 23 10

task definition 313 23 1 0

task definition 314 23 1 0

.
Tasks 315-319 (ground mines)

task definition 315 23 10

task definition 316 23 10

task definition 317 23 1 0

task definition 318 23 1 0

task definition 319 23 1 0

Tasks 320- 324 (ground contacts - enemy)
task definition 320 14 1 0

task definition 321 14 1 0

task definition 322 23 1 0

task definition 323 23 1 0

task definition 324 23 1 0

Task 325-329 (sea contacts - neutrals)

task definition 325 19 0 3

task definition 326 23 0 3

task definition 327 23 0 3

153

task definition 328 23 0 3

task definition 329 23 0 3

Task 330-334 (ground contacts - silkworm launchers)

task definition 330 23 1 3

task definition 331 23 1 3

task definition 332 23 1 3

task definition 333 23 1 3

task definition 334 23 1 3

.u
Task 335-339 (medivac mission)

task definition 335 20 0 3
task attribute 335
10.0 20.0 0.00 0.00 0.00 0.00 0.00 0.00 5.00 0.00

task definition 336 20 0 3

task definition 337 23 0 3

task definition 338 23 0 3

task definition 339 23 0 3

task prerequisites 310 3 236 237 238

task spawn 306 1 A 311
task spawn 310 4 A 320 321 335 336
task spawn 286 1 D 289

#<<<<<<<<<<<<<« Maneuver Information »»»»»»»
NOTE - SPECIFIC EXAMPLES ONLY OF MANEUVERS PROVIDED
Tasks 200-220 (swamp areas)

maneuver definition 200 1.000
s 18.0 89.0 3600.0
e 18.0 89.0 0.0

154

Tasks 226-230 (ground mines)

maneuver definition 226 6000.000
s 15.0 60.0 3600.0
e 15.0 60.0 0.0

Tasks 236-240 (sea mines)

maneuver definition 236 10.00
s 33.0 80.5 3600.0
e 33.0 80.5 0.0

Tasks 241-250 (artilery)
Artillery positions: site one: (12.0 67.0 - north)
site two: (15.0 88.0 - south)

maneuver definition 241 500.0
s 12.0 67.0 300.0
m 12.0 67.0 0.99
e 27.5 72.5 0.0

Tasks 251-255 (ground contacts - enemy)

maneuver definition 251 6000.00
s 22.0 70.0 3600.0
e 22.0 70.0 0.0

Tasks 261-265 (aircontacts, anti-shipping)

maneuver definition 261 900.00
m 1.00 20.0 0.9
e 75.0 20.0 0.0

Tasks 266-270 (aircontacts, anti-ground)

maneuver definition 266 6000.000
s 10.0 70.0 3600.0
e 10.0 70.0 0.0

Task 271-275 (air contacts - helicopter)

maneuver definition 271 600.000
m 5.0 95.0 0.9
e 64.0 75.0 0.0

155

Task 276-280 (air contacts - neutral)

maneuver definition 276 6.000
m 10.0 70.0 0.50
e 99.0 70.0 0.0

#.
Task 281-285 (ground contacts - frog launchers)

maneuver definition 281 720.000
s 3.00 85.0 1200.0
m 3.00 85.0 0.88
e 28.0 83.0 0.00

Task 286-290 (ground contacts - silkworm launchers)

maneuver definition 286 1200.000
s 28.5 51.5 720.0
e 28.5 51.5 0.0

Task 291-295 (medivac mission)

maneuver definition 291 6000.000
s 28.0 73.0 3600.0
e 28.0 73.0 0.0

tasks 296-300 (sea contacts - submarines)

maneuver definition 296 120.000
m 99.0 40.0 0.9
e 75.0 20.0 0.0

Task 301-305 (sea contacts - patrol boats)

maneuver definition 301 600.000
m 32.0 38.0 0.99
e 70.0 20.0 0.0

tasks 306-314 (ground missions)

maneuver definition 306 1.000 #(hill)
s 25.00 60.00 3600.0
e 25.00 60.00 0.00

156

1 June 1996 Scenario Players Guide - Experiment 1

APPENDIX B [DDD Tutorial]

1. The DDD Graphical User interface
The DDD graphical user interface displays a map on the left side of the screen which is

a graphical representation of friendly and enemy objects. Within the map, land is
represented by squares which have a brown tint, and sea by squares which are white. The
mouse commands listed in the next section will describe how friendly objects on the map
may be manipulated and how information on enemy objects is obtained. The right half of
the screen contains four buttons:

Start/Refresh: The Start button is used only at the beginning of a scenario to start all
of the stations playing. Once the scenario has begun, the button changes to Refresh.
Left clicking on the Refresh button redraws the map eliminating any undesired traces
which may appear.

Zoom In: Allows the user to zoom in for a more detailed look at a particular section of
the map. To zoom in, left click on the "Zoom In" button. Move the cursor over to map
and left click at a point to the left or right of where the area of interest lies. While
continuing to hold the left mouse button depressed, drag the cursor and a box will
begin to appear showing the area which will be zoomed in on.

Zoom Out: Left clicking on this button returns the map to the previous map size.

Cancel: Left Clicking on the Cancel button allows the user to suspend an operation on
an asset such as a move or an attack prior to completing the task.

The right half of the screen also contains a time bar. When a friendly object (platform
or sub-platform) is selected to perform an action (i.e. launch aircraft, attack a task), a white
arrow will appear next to this bar showing the amount of time to complete this task. The
object cannot perform any other action until this action is completed. In addition, above the
time bar are several other pieces of information. The color of the stick man figure in a box
shows the color of the objects on the map which your station controls. Next to the this box
is the name of the station you are playing (i.e. CJTF, MEU 2, etc.) Below the box are two
counters which display feedback on how well the entire team is doing on the scenario. The
counter labeled mission starts at zero and increments as tasks are accomplished. The
counter labeled strength starts at 100 and decrements as your force strength is decreased.

The lower portion of the screen contains two window dialog boxes. Close attention
must be given to the window on the left as this box displays messages between the various
players which may require some action to be taken by your station. The right window can

157

1 June 1996 Scenario Players Guide - Experiment 1

best be described as a confirmation window. Summaries of messages or actions performed
by your station will appear in this window along with some messages about the status of
other friendly objects. Also, the very bottom of the screen below these two windows
displays warning and error prompts. A beep will occur along with a warning or error
message following any action performed by your station which is not allowed (i.e.
Attempting to attack the enemy when your unit is out of range).

2. Using the Mouse in DDD
A standard three button mouse is used when running a scenario at each workstation.

When clicking on an object in DDD each mouse button serves a different function
depending on whether the object is friend or foe, and if friend whether or not the object is
owned or not owned by you.

Left Mouse Button: The left mouse button clicked on an object will just select it. The
left mouse button is also used to carry out options selected from the menu presented
when an object is right clicked on.

Middle Mouse Button: When the middle button is clicked on an object, the window
presented depends on whether the object is a (1) friendly platform or sub-platform or
(2) enemy platform or task. If the object is an enemy platform or task, a window
appears which provides known information about the attributes of the object. If a
friendly object is selected, a screen appears which displays the attributes ofthat
platform or sub-platform. If a platform is selected the attributes, ownership, and
number of all sub-platform located on the platform are also shown. Platforms are the
major friendly objects in the scenarios. Sub-platforms are objects such as aircraft,
Naval Surface Fire Support missions, standard missile missions, helicopters, etc. which
are carried by a platform. The ownership of any sub-platform may or may not be the
same as the owner of the platform it is being carried on.

When a friendly platform is selected with the middle mouse button, the portion of
the window where the sub-platforms are listed is used to launch or request launch of a
sub-platforms depending on where the sub-platform is located. There are three possible
situations which can occur here:

1- Sub-platform needed to be launched is on a platform owned bv von- In this case
you can launch any sub-platform on your platform whether you own it or not. This
is done by left clicking on the right arrow key in the line for the number of sub-
platform(s) needed and then clicking OK..

2. Sub-Platform needed to be launched and which is owned bv vou is located cm a
platform which ypu do not own: In this case middle click on the platform where

158

1 June 1996 Scenario Players Guide - Experiment 1

your sub-platform is located. Left click on the arrow located in the line of the sub-
platform needed until the desired number of sub-platforms to be launched is set,
and then left click on OK. A message will then be sent to the owner of the platform
where your sub-platform is located requesting that it be launched. It is the
responsibility of the person where your sub-platform resides to launch it.

3. Sub-platform needed is not owned by you and is located on a platform not owned
by you: In this case middle click on the platform where the sub-platform needed
resides. Left click on the arrow on the line containing the sub-platform desired until
the required number is set, and then left click on OK. A message will then be
forwarded up your chain of command which must be acted upon by your immediate
superior to obtain this sub-platform.

The lower portion of this screen also offers options for displaying information on range
rings for both sensors and weapons of a friendly object against either enemy ground, air, or
sea assets. The sensor option will display four range rings around the object. The outermost
black ring represents the detection range; the next inner black ring represents the range at
which measurements on the enemy can be made; the furthest inner black ring represents
the visual detection range; and the inner yellow ring represents the range at which the
object is vulnerable. The weapons option displays a single red ring around the object
which shows the effective range of its weapon. To display these range rings left click on
either sensors, weapon, or both, and then left click what type of medium to display these
for (air, ground, or sea). To turn the range rings off, middle click on the object and left
click on none.

Right Mouse Button: The right mouse button will cause a menu to pop up with the menu
options depending on ownership of the object and whether it is a friendly or enemy object
or task. The following sections describe the options presented depending on the object
selected with the right mouse button.

1. Friendly object which you do not own: The menu that pops up will present the
option of requesting the asset, forcing the transfer of the asset, or information on the
asset. Explanations of these options follow:

Request (REQ): A menu will pop which allows selecting who the request is to,
and the urgency of the request. All items must be selected. When the choices are
completed, a message is sent to the person selected if they are directly in your chain
of command or up your chain of command where your superior must take action on
the request.

Force Transfer (FORCE XFR): This option may only be used if the station you

159

1 June 1996 Scenario Players Guide - Experiment 1

are playing is superior to someone else in the scenario (i.e. CJTF, MCC, or GCC).
Units may only be forcibly transferred which are under control of a person
subordinate to you. When this option is selected, a menu will pop up which lists the
other players in the scenario. Left click on the person the asset is desired to be
forcibly transferred to and click OK. The object will be transferred to the person
selected provided the object is transferable object.

Information (INFO): Same as middle clicking on the object.

Friendly object which you own: This menu will allow the choices of Move, Pursue,
Attack, Return, Transfer, or Information. An explanation of these options follow:

Move: Selecting move will cause a cross-hair type symbol to appear. Position this
cross hair to the place the object is desired to be moved and single click with the
left mouse button. The object will then move to this position. When it arrives there,
it will stop until another command to move is given.

Pursue: Selecting pursue will cause the cursor to change to a finger. Place the
finger on the enemy object desired to be pursued, left click, and your object will
then move to pursue it.

Attack: Attack in DDD does not only have the connotation of physically
performing destruction on an object, but also implies that the object selected will
carry out a task of some sort. When this option is selected a question mark will
appear. Place the question mark on the object or task an action is to be performed
on. If in range to perform the this action, a menu will then appear which shows the
attributes of the object selected to perform the task and the attributes of the object
that the task to be performed on. The option is then given to carry out the task or to
cancel the assignment. If the object selected to attack the enemy does not have
enough combat power to accomplish the task, a coordinated attack may be
performed. It should be noted that the following explanations of how to do a
coordinated attack will work only if all of the objects are within attack rangp A
coordinated attack using two ohjects is accomplished by first selecting one of the
two objects to perform the coordinated attack with the left mouse button, and then
right clicking on the second object performing the attack. The menu will then pop
up and select the attack option. The cursor will then change to the question mark.
Place it on the object which is to be attacked and left click with the mouse. To
perform a coordinated attack with three or more objects left click on the first object
performing the attack. Then, while holding the shift key down on the keyboard, left
click on all but one of the remaining objects performing the attack. Release the
shift key and right click on the final object. The menu will pop up and select attack.

160

1 June 1996 Scenario Players Guide - Experiment 1

The cursor will change to a question mark. Place it on the object to be attacked and
left click.

Return: This option may only be used for sub-platforms. Selecting this option will
cause the sub-platform to return to the platform it originated from. The sub-
platform will not move towards its originating platform, but instead will change to
a box with a "x" in it to simulate returning to its originating platform. The return
option has been disabled on some sub-platforms in the scenario. If one of these sub-
platforms is directed to return, an error message will appear.

Transfer (XFR): Used to transfer control of an object from one person in the chain
of command to another, and to inform another player that an object requested for
transfer will not be transferred . When selected, a menu will pop up showing all
members of the chain of command. Select the person to whom control is to be
passed or to whom a request for transfer is to be denied by left clicking on that
person. Then, to transfer control ensure the "transfer right now" button is depressed
and click OK; or to send a message denying the request left click on "I can't
transfer right now" and click OK. The object will then transfer control to the person
selected or a message will be sent informing them that the request for transfer has
been denied.

Information (INFO): Same as middle clicking on the object.

Enemy Objects or Tasks: The menu presented in this instance presents the options of
Identify, Requesting Information, Transferring Information, Coordinating Action,
Assigning, and Information. Explanations of these options follow:

Identify: This option is normally used to identify enemy objects or tasks for which
the identity is unknown. This will be readily apparent in a scenario as the first letter
shown with the icon will be followed by a question mark. The first letter designates
which medium the unknown contact operates in. "A?" implies an unknown air
contact; "G?" implies an unknown ground contact; "S?" implies an unknown sea
contact. Selecting the identify option will cause a menu to pop up which shows the
known attributes of the object or task as seen by each player in the scenario. If a
friendly object having sensors capable of identifying the enemy object or task is
within sensor range the object will be identified correctly. If not, the question mark
will remain. This will be apparent by looking at the lower left hand column where
the identity will be shaded from a list of possible identities. Click the fused button
near the top left hand corner and then OK. The identity of the object will then
appear correctly on the map and its icon will change to its correct identity.

161

1 June 1996 Scenario Players Guide - Experiment 1

The following tables give descriptions of the two letter symbols which will be the options
shown when identifying an object:

Unknown Ground

"AT-

"SF"

~nr
~sr
FG

"SWG"
TfT
~RU"
"MTT

Description
Unknown
uround mission ot taking a hill
Airport ground mission
seaport ground mission
Holding or occupying ground
taking a ground mission
tnemy artillery
bnemy Frog launcher ~~
tnemy Silkworm missile launcher
bnemy tanKs, troops, or vehicles
Neutral
Land Mines

Unknown Air

"Ä5-

"ÄG-

"HFT

"SW7T

bnemy helo attack against ships'
Neutral ~

unknown Sea

"MS-

"55"
"MIT
"THr

Description
Unknown
bnemy attacK against ships
bnemy attacK against ground force

silkworm missile in flight

unknown
Description

sea mines
bnemy patrol boats
bnemy submarines
bnemy anti-snip cruise missiles
Neutral :

Request Information (REQ INFO): Selecting this option will cause a menu to
pop up which allows selecting anther player or all other players you wish
information on the enemy object or task from . Select the person(s) and click OK. A
message will then be sent to the person(s) notifying them that this information is
requested.

Transfer Information (XFR INFO): Selecting this option will cause a menu to
pop up which allows selecting a particular individual or all other players you wish
information on the enemy object or task to be sent to . Select the person(s) and click
OK. A message will then be sent to the person(s) selected.

Coordinate Action (CRD ACTION): The use of this option allows messages to
be sent between players concerning action requests, support, or intent against an
enemy object or task. When selected, a menu pops up displaying options for
choosing who the message is to sent to and a list of messages which may be sent.
The following messages may be sent:

1.1 plan to handle.
2.1 plan to support.
3.1 cannot handle.
4.1 cannot support.
5. Can you handle ?
6. Can you support ?

Select the person the message is to be sent to, a message is to be sent, and click OK.
The message will then be sent to the person selected.

162

1 June 1996 Scenario Players Guide - Experiment 1

Assign: This option may only be used if you are playing a position where you are
superior to someone in the chain of command and may only be directed at those
people who are subordinate to you. This option will cause a question mark to
appear. Place it on the enemy object or task desired to be assigned and left click. A
menu will then appear which allows selecting whom in the chain of command it is
to be assigned to. Left click on the person desired to assign the task to and click
OK. A message will then be sent to that person notifying them they are responsible
for taking care of the task.

Information (INFO): Same as middle clicking on the object.

3.0 List of Objects in the Scenario

Terrain and task objects
The following shows representations of the icons which represents terrain or task

objects in the scenarios.

ifc; , Swamp: The swamp icon indicates areas which mechanized or infantry units should
not traverse. Friendly units will not be destroyed by going into these areas, but total
strength will be diminished.

IFTI Airfield: The airfield icon is used twice in the scenarios. The enemy has one
airfield which is the objective or task to completed by MEU 2. This airfield has attributes
associated with it which must be compared to the attacking force attributes to determine if
the necessary force is available. The second airfield is friendly owned and controlled by the
CJTF. It contains additional assets such as an SR-71 and F-15's which are also under
control of the CJTF.

D^jeasjr] Port: The port is the objective or task of MEU 1. It, like the airfields, also
has attributes which must first be determined and compared to attacking forces attributes to
determine if enough combat power can be brought to bare to achieve this objective.

LiLJ Hill: The hill is commanding terrain between the port and airfield which must be
captured by MEU 1. It is surrounded by swamps on both sides which means the only way
of accomplishing this task is by using heli-borne assault troops (HTP sub-platform).

Task: The task icon has attributes which must first be identified and then a
determination made as to the best asset available to complete this task. Tasks are normally

163

1 June 1996 Scenario Players Guide - Experiment 1

used to represent enemy ground forces in a given location which must be eliminated.

Medivac: The medivac icon is a task which may appear after friendly ground
platforms or sub-platforms engage enemy objects or tasks. The task has attributes which
must be determined. The task is completed by attacking it with the medivac helicopter
(HMV sub-platform).

 "Hold: The hold icon may appear after completion of a task (i.e. attacking the
hill). If this occurs the asset used to perform the task must remain in its current position
and may not be used to perform any other task.

Enemy Assets
The following section shows the icons which represent enemy forces that may or may

not appear in a scenario. The text which follows each icon describes the enemy objects
capabilities and the friendly weapon of choice to use against it.

J^. Artillery: Enemy artillery pieces may pop up at various times. When they appear,
they take approximately 15 minutes to set up before they are able to fire. They pieces are
stored in reinforced concrete bunkers with the ammunition stored in deep underground
bunkers. The only method in which enemy artillery may be suppressed is through the use
of Naval Surface Fire support (NSFS). Once the artillery pieces begin to move toward you,
which simulates firing, you will be unable to attack them.

Mines: The enemy possesses the possibility of deploying both land and sea based
mines. If encountered and moved through by friendly forces the total effectiveness of these
forces will be dimimshed. Sea based mines may only be cleared by the use of a mine
clearing helicopter (MCM sub-platform) located on the ARG ships. Land mines may only
be cleared through the use of the engineering platoon owned by MEU 1 (HE sub-
platform).

Frog Missile sites: These sites are capable of launching short range missiles
containing chemical munitions. The launchers take approximately 30 minutes to set up.
Naval Surface Fire Support is ineffective at suppressing these launchers. Suppression must
be done through the use of Close Air Support (CAS) aircraft carrying precision guided
munitions located on the aircraft carrier (VA sub-platform).

V* Silkworm Missile Site: The enemy has placed silkworm missile sites in residential
areas near the port. The appearance of a silkworm site requires visual confirmation through

164

1 June 1996 Scenario Players Guide - Experiment 1

use of the SR-71 (SR7 sub-platform) prior to attacking the site. The site may only be
destroyed by using CAS carrying precision guided munitions (VA sub-platform).

Submarines: The enemy submarines are Kilo class diesel boats. They can only be
destroyed using the FFG platform.

Ship: The only ships the enemy possesses are fast patrol boats. These can only be
destroyed by using the SH-60 helicopters (H60 sub-platform) which carry penguin
missiles.

Helicopter: The enemy possesses Hind helicopters capable of carrying Exocet anti-
ship missiles. These helicopters are very low flyers which precludes the use of standard
missiles to defend against them. The only friendly asset capable of destroying them are the
stinger platoon (SD sub-platform) located on one of the ARG ships.

Aircraft: Enemy aircraft may launch attacks against the ARG or the CVBG.
Aircraft may be destroyed by using either standard missiles (SAM sub-platform) located
onboard the Aegis cruiser or by using fighter aircraft (VF or F15 sub-platforms) located on
the carrier or at the Sigonella airbase.

Tanks: Enemy tanks may be encountered along the road for the assaults on both the
airfield and the port. The tanks can only be seen when within the detection range of
friendly ground forces. If friendly forces move out of range the tank icon will disappear.
Tanks can only be destroyed by using the Cobra helicopters (HCB sub-platform) armed
with TOW missiles which are located on the ARG ships.

\/ Unknown Enemy Object: When this icon appears it must first be identified to
determine what it is. The icon will have a letter designation followed by a "?". "A" implies
unknown air; "G" implies unknown ground; and "S" implies unknown sea. The object
must be identified with a suitable friendly platform or sub-platform. Identification of
unknown ground objects may only be accomplished using the SR-71 (SR7 sub-platform)
located at the Sigonella airbase.

Friendly Assets

□ Friendly Platform Icon: This icon is used to represent friendly platforms in a
scenario. The middle of the box will contain a letter to show the type of medium in which

165

1 June 1996 Scenario Players Guide - Experiment 1

the platform operates. The letter "G" implies a ground asset; the letter "S* implies a sea
asset; and the letter "A" implies an air asset. An additional letter and number designator
will be shown on the map above the icon for further identification (i.e. CVN-000).
Platform icons are color coded to show ownership.

V_^ Friendly Sub-platform Icon: When launched from its parent platform a sub-
platform will appear as circle with a letter and number combination above it for further
identification (i.e. MCM-101). The middle of the circle will contain a letter to show the
type of medium in which the platform operates. The letter "G" implies a ground asset; the
letter "S' implies a sea asset; and the letter "A" implies an air asset. Sub-platform icons are
also color coded to show ownership.

El Friendly Platform/Sub-platform Busy Icon: When a platform or sub-platform is
directed to perform some task such as attacking; transfer ownership between players;
launch a sub-platform; or when a sub-platform is directed to return, the icon will change to
a box with a "x" in it. The platform or sub-platform cannot be directed to perform any
other function until this task is completed. At the end of the task it will change back to its
previous form.

Chain of Command
One of the following organizational structures will be used in the running of the

scenario depending on which scenario is being run.

CJTF

nrr=i-i _[

| CJTF |

GCC I ARG I CVBGl MEUll MEU2

1
MEU1I MEU 2 | ARG [|CVBG|

Commander Joint Task Force (CJTF): Overall commander of the operation as
delineated in the oporder. The CJTF owns the Sigonella airbase and various sub-platforms
in the scenarios. Units controlled by the CJTF in a scenario will be black in color.

Ground Component Commander (GCC): Reports directly to the CJTF when used in the
chain of command. Responsible for coordination of the ground assets of MEU 1 and MEU
2 as delineated in the oporder. Units controlled by the GCC will be green in color.

166

1 June 1996 Scenario Players Guide - Experiment 1

Maritime Component Commander (MCC): Reports directly to the CJTF when in the
chain of command. Responsible for coordination of maritime assets of the ARG and
CVBG as delineated in the oporder. Units controlled by the MCC will be green in color.

Amphibious Ready Group (ARG): The ARG controls a group of three amphibious ships
consisting of a LHA, LPD, and a LHD, and two Spruance class destroyers. Units under the
ARG's control are orange in color.

Carrier Battle Group (CVBG): The CVBG controls a battlegroup consisting of a Nimitz
class carrier, a Ticonderoga class cruiser, and an Perry class frigate. Units under the
CVBG's control will be red in color.

Marine Expeditionary Unit (MEU 1 & MEU 2): The two MEU's each own there own
LCAC for transporting troops ashore for an amphibious assault. Each LCAC carries the
infantry portion of the MEU mounted in AAV's for mobility once they reach the shore.
Each MEU also owns helicopter assets which reside on the ARG. Units under MEU 1 are
blue in color while those of MEU 2 are pink in color.

167

168

LIST OF REFERENCES

1. Kleinman, D. L. and A. Song, "A Research Paradigm for Studying Team
Decisionmaking and Coordination," Proc. 1990 JDL Symposium on Command and
Control Research, Monterey, CA, June 1990, pp. 129-135.

2. Kleinman, D. L., Serfaty, D., & Luh, P. B. (1984). "A Research Paradigm for
Multi-Human Decision Making", Proceedings of the 1984 American Control
Conference (pp. 6-11), San Diego, CA.

3. Kleinman, D. L., Luh, P. B., Pattipati, K. R. (1990). "Mathematical Models of Team
Distributed Decisionmaking", to appear in: Teams: Their Training and Performance,
R. W. Swezey & E. Salas (Eds.), New York: ABLEX, 1990.

4. Michael C. Berigan. Task Structure and Scenario Design. Master's Thesis, Naval
Postgraduate School, Monterey, California, June 1996.

5. Kemple, Kleinman, Berigan. (1996). "A2C2 Initial Experiment: adaptation of the
Joint Scenario and Formalization".

6. Kemple, Hutchins, Kleinman, Sengupta, Berigan & Smith. (1996). "Early Experiences
with Experimentation on Dynamic Organizational Structures".

7. Sullivan, (1996). DDD Tutorial for A2C2 phase one experiments conducted March
1996

169

170

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
8725 John J. Kingman Rd., STE 0944
Ft. Belvior, VA 22060-6218

2. Dudley Knox Library
Naval Postgraduate School
411 DyerRd.
Monterey, California 93943-5101

3. Professor David Kleinman, Code C3
Naval Postgraduate School
Monterey California 93943

4. Professor William G. Kemple Code CC
Naval Postgraduate School
Monterey California 93943

5. Professor Gary Porter Code CC
Naval Postgraduate School
Monterey California 93943

6. Professor Mike Sovereign Code CC/FM
Naval Postgraduate School
Monterey California 93940

7. Dr. Elliot E. Entin
Alphatech, INC.
Executive Place III
50 Mall Road
Burlington MA 01803

8. Professor Kathleen Carley
Dept. of Social and Decision Sciences
Carnegie Mellon University
Pittsburgh PA 15123

9. Professor John Hollenbeck
Management Department
Michigan State University
East Lansing MI 48824

171

10. Professor Alexander Levis
George Mason University
4400 University Drive
Fairfax VA 22030

11. Dr. Willard Vaughan
Office of Naval Research
Code 342
800 N. Quincy Street
Arlington VA 22217

12. Dr. Gerald Malecki
Office of Naval Research
Code 342
800 N. Quincy Street
Arlington VA 22217

13. Daniel Serfaty
APTIMA, Inc.
25 Mall Road
Suite 300
Burlington MA 01803

14 Professor Krishna Pattipati
Department of ESE - Ul57
260 Glenbrook Rd.
Storrs, CT 06269-3157

15. Communications Officer
Cruiser Destroyer Group One
PSC1 Box 2031
APOAA 34001-2031

16. Capt Donald Loren
Commander, Destroyer Squadron twenty-eight
Unit 60549
FPO AE 09506-4735

172

